41 research outputs found

    Hidden negative linear compressibility in lithium L-tartrate†

    Get PDF
    Development of artificial muscles, next-generation pressure sensors and precision optics relies on advances in materials with anomalous mechanical properties. Negative linear compressibility, NLC, is one such rare, counterintuitive phenomenon, in which a material expands along one axis under hydrostatic pressure. Both classical and recent NLC materials face a pay-off between the active pressure range and magnitude of NLC, and in the vast majority of cases the NLC effect decreases with pressure. By decoupling the mechanical behaviour of building units for the first time in a winerack framework containing two different strut types, we show that lithium L-tartrate exhibits NLC with a maximum value, Kmax = -21 TPa^-1, and an overall NLC capacity, χNLC = 5.1 %, that are comparable to the most exceptional materials to date. Furthermore, the contributions from molecular strut compression and angle opening interplay to give rise to so-called “hidden” negative linear compressibility, in which NLC is absent at ambient pressure, switched on at 2 GPa and sustained up to the limit of our experiment, 5.5 GPa. Analysis of the changes in crystal structure using variable-pressure synchrotron X-ray diffraction reveals new chemical and geometrical design rules to assist the discovery of other materials with exciting hidden anomalous mechanical properties

    The effect of pressure on the post-synthetic modification of a nanoporous metal-organic framework

    Get PDF
    This work is supported by funding from the EPSRC UK and the Leverhulme TrustHere we report four post-synthetic modifications, including the first ever example of a high pressure-induced post-synthetic modification, of a porous copper-based metal-organic framework. Ligand exchange with a water ligand at the axial metal site occurs with methanol, acetonitrile, methylamine and ethylamine within a single-crystal and without the need to expose a free metal site prior to modification, resulting in significant changes in the pore size, shape and functionality. Pressure experiments carried out using isopropylalcohol and acetaldehyde, however, results in no ligand exchange. By using these solvents as hydrostatic media for high-pressure single-crystal X-ray diffraction experiments, we have investigated the effect of ligand exchange on the stability and compressibility of the framework and demonstrate that post-synthetic ligand exchange is very sensitive to both the molecular size and functionality of the exchanged ligand. We also demonstrate the ability to force hydrophilic molecules into hydrophobic pores using high pressures which results in a pressure-induced chemical decomposition of the Cu-framework.Publisher PDFPeer reviewe

    Evidence of Glycolysis Up-Regulation and Pyruvate Mitochondrial Oxidation Mismatch During Mechanical Unloading of the Failing Human Heart: Implications for Cardiac Reloading and Conditioning

    Get PDF
    This study sought to investigate the effects of mechanical unloading on myocardial energetics and the metabolic perturbation of heart failure (HF) in an effort to identify potential new therapeutic targets that could enhance the unloading-induced cardiac recovery. The authors prospectively examined paired human myocardial tissue procured from 31 advanced HF patients at left ventricular assist device (LVAD) implant and at heart transplant plus tissue from 11 normal donors. They identified increased post-LVAD glycolytic metabolites without a coordinate increase in early, tricarboxylic acid (TCA) cycle intermediates. The increased pyruvate was not directed toward the mitochondria and the TCA cycle for complete oxidation, but instead, was mainly converted to cytosolic lactate. Increased nucleotide concentrations were present, potentially indicating increased flux through the pentose phosphate pathway. Evaluation of mitochondrial function and structure revealed a lack of post-LVAD improvement in mitochondrial oxidative functional capacity, mitochondrial volume density, and deoxyribonucleic acid content. Finally, post-LVAD unloading, amino acid levels were found to be increased and could represent a compensatory mechanism and an alternative energy source that could fuel the TCA cycle by anaplerosis. In summary, the authors report evidence that LVAD unloading induces glycolysis in concert with pyruvate mitochondrial oxidation mismatch, most likely as a result of persistent mitochondrial dysfunction. These findings suggest that interventions known to improve mitochondrial biogenesis, structure, and function, such as controlled cardiac reloading and conditioning, warrant further investigation to enhance unloading-induced reverse remodeling and cardiac recovery

    Cardiac Allograft Vasculopathy in Redo-transplants: Is it More or Less the Same the Second Time Around?

    Get PDF
    Purpose: Cardiac allograft vasculopathy (CAV) continues to hinder the long-term success of heart transplant recipients.  Redo-transplantation is currently the only definitive treatment for advanced CAV. We examined whether these patients are at similar CAV-risk with the second transplantMethods: Heart recipients from 1985 to 2011 at the UTAH program were included in the study and those with CAV as an indication for redo-transplantation were identified. CAV diagnosis was made by coronary angiography and based on the 2010 ISHLT standardized nomenclature for CAV. Patient demographics, rejection history, and CAV incidence were analyzed. Results: Of the 1,169 eligible patients, 135 (11.5%) developed CAV post their first transplant; 78 cases within 10 years and 54 beyond 10 years. The mean time to CAV was 6.58 years. Of the 135 patients who developed CAV, only 21 (15.5%) ended up requiring a redo-transplant. Of the 21 retransplanted patients, 4 (19.0%) developed CAV again; 2 patients within 10 years and 2 patients beyond 10 years indicating a similar risk for CAV occurrence for first and redo-transplant. Conclusions: Our results indicate that CAV is as likely to develop in redo-transplants despite recent advances in immunosuppression and the standardized use of lipid-lowering agents. Although outcomes in redo-transplantation for the indication of CAV are favorable, efforts to better understand and minimize CAV are needed, especially in the face of scarce donor organs

    A high-pressure crystallographic and magnetic study of Na5[Mn(l-tart)2]·12H2O (l-tart = l-tartrate)

    Get PDF
    The crystal structure and magnetic properties of the compound Na5[Mn(L-tart)2]‱12H2O (1, L-tart = L-tartrate) have been investigated over the pressure range 0.34 – 3.49 GPa. The bulk modulus of 1 has been determined as 23.9(6) GPa, with a compression of the coordination spheres around the Na+ ions observed. 1 is therefore relatively incompressible, helping it to retain its magnetic anisotropy under pressure

    Stabilization of Scandium Terephthalate MOFs against Reversible Amorphization and Structural Phase Transition by Guest Uptake at Extreme Pressure

    Get PDF
    Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2–BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2–BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Reply to the Editor

    No full text
    corecore