569 research outputs found
Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II
We present a new study of the X-ray spectral properties of the Crab Pulsar.
The superb angular resolution of the Chandra X-ray Observatory enables
distinguishing the pulsar from the surrounding nebulosity. Analysis of the
spectrum as a function of pulse phase allows the least-biased measure of
interstellar X-ray extinction due primarily to photoelectric absorption and
secondarily to scattering by dust grains in the direction of the Crab Nebula.
We modify previous findings that the line-of-sight to the Crab is
under-abundant in oxygen and provide measurements with improved accuracy and
less bias. Using the abundances and cross sections from Wilms, Allen & McCray
(2000) we find [O/H] = ( is
solar abundance). We also measure for the first time the impact of scattering
of flux out of the image by interstellar grains. We find . Analysis of the spectrum as a function of pulse phase also
measures the X-ray spectral index even at pulse minimum --- albeit with
increasing statistical uncertainty. The spectral variations are, by and large,
consistent with a sinusoidal variation. The only significant variation from the
sinusoid occurs over the same phase range as some rather abrupt behavior in the
optical polarization magnitude and position angle. We compare these spectral
variations to those observed in Gamma-rays and conclude that our measurements
are both a challenge and a guide to future modeling and will thus eventually
help us understand pair cascade processes in pulsar magnetospheres. The data
were also used to set new, and less biased, upper limits to the surface
temperature of the neutron star for different models of the neutron star
atmosphere.Comment: 32 pages, 6 figures submitted to the Astrophysical journa
The Identification of the X-ray Counterpart to PSR J2021+4026
We report the probable identification of the X-ray counterpart to the
gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray
Observatory ACIS and timing analysis with the Fermi satellite. Given the
statistical and systematic errors, the positions determined by both satellites
are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg
26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined
statistical and systematic error. Moreover, both the X-ray to gamma-ray and the
X-ray to optical flux ratios are sensible assuming a neutron star origin for
the X-ray flux. The X-ray source has no cataloged infrared-to-visible
counterpart and, through new observations, we set upper limits to its optical
emission of i' >23.0 mag and r' > 25.2mag. The source exhibits an X-ray
spectrum with most likely both a powerlaw and a thermal component. We also
report on the X-ray and visible light properties of the 43 other sources
detected in our Chandra observation.Comment: Accepted for publication in the Astrophysical Journa
Controlled depolymerisation, as assessed by analytical ultracentrifugation, of low molecular weight chitosan for potential use in archaeological conservation
The heterogeneity and molecular weight of a chitosan of low molecular weight (molar mass) and low degree of acetylation (0.1), for potential use as a consolidant for decayed archaeological wood, has been examined by sedimentation velocity and sedimentation equilibriumin the analytical ultracentrifuge before and after depolymerisation. Sedimentation velocity before polymerisation revealed a uniform distribution of sedimentation coefficient with little concentration dependence. SEDFIT-MSTAR analysis revealed a weight average molecular weight Mw of (14.2 + 1.2) kDa, and polydispersity index of ~ 1.2. Further analysis using MULTISIG revealed a distribution of material between 2-20 kDa and consistent with the weight average Mw. Controlled depolymerisation using hydrogen peroxide and UV in an acetic acid medium reduced this to (4.9 + 0.7) kDa, with a similar polydispersity. The depolymerised material appears to be within the range that has been predicted to fully penetrate into archaeological wood. The consequences for this and the use of the analytical ultracentrifuge in wood conservation strategies is considered
The effect of thermal processing in oil on the macromolecular integrity and acrylamide formation from starch of three potato cultivars organically fertilized
Starches from three organically produced cultivars of potato tuber (Lady Rosetta, Spunta and Voyager) have been studied in relation to (i) acrylamide production (ii) macromolecular integrity after frying with extra virgin olive oil, soybean oil and corn oil. During cultivation, a treatment involving the combination of nitrogen, phosphorus and potassium fertilization under organic farming was applied (N1, P2, K1 where Ν1 = 1.3 g Ν per plant, P2 = 5.2 g P2O5 per plant, Κ1 = 4.0 g K2O per plant).
Potatoes fried in olive oil retained the highest glucose concentrations for all cultivars 0.85 ± 0.2 mmol/kg, followed by 0.48 ± 0.2 for those fried in corn oil and 0.40 ± 0.1 mmol/kg for those fried in soybean oil. The highest average fructose concentration was recorded for the samples fried in corn oil as 0.81 ± 0.2, followed by 0.80 ± 0.2 and 0.68 ± 0.3 mmol/kg for the samples fried in olive and soybean oils, respectively. Asparagine was the most abundant free amino acid in the three varieties tested, followed by glutamine and aspartic acid. The mean initial concentration of asparagine in raw potatoes tubers was 42.8 ± 1.6 mmoles kg−1 for Lady Rosetta, 34.6 ± 1.2 mmoles kg−1 (dry weight) for Spunta and 36.2 ± 2.0 mmoles kg−1 for Voyager. Lady Rosetta contained a significantly higher concentration of asparagine compared to the other two varieties (p < 0.05). The greatest quantity of acrylamide was observed in French fries derived from the potato variety Lady Rosetta when fried in soybean oil and it was 2,600 ± 440 μg/kg, followed by Spunta which was 2,280 ± 340 μg/kg and Voyager 1,120 ± 220 μg/kg. There is a significant reduction in the formation of acrylamide in the variety Voyager compared to the others (p = 0.05)
Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO
The last three decades has seen some important
advances in our ability to represent the conformation of
proteins in solution on the basis of hydrodynamic measurements.
Advances in theoretical modeling capabilities have
been matched by commensurate advances in the precision of
hydrodynamic measurements. We consider the advances in
whole-body (simple ellipsoid-based) modeling—still useful
for providing an overall idea of molecular shape, particularly
for those systems where only a limited amount of data is
available—and outline the ELLIPS suite of algorithms
which facilitates the use of this approach. We then focus
on bead modeling strategies, particularly the surface or
shell–bead approaches and the HYDRO suite of algorithms.
We demonstrate how these are providing great insights into
complex issues such as the conformation of immunoglobulins
and other multi-domain complexes
Production of membrane proteins for characterisation of their pheromone-sensing and antimicrobial resistance functions
AbstractDespite the importance of membrane proteins in cellular processes, studies of these hydrophobic proteins present major technical challenges, including expression and purification for structural and biophysical studies. A modified strategy of that proposed previously by Saidijam et al. (2005) and others, for the routine expression of bacterial membrane proteins involved in environmental sensing and antimicrobial resistance (AMR), is proposed which results in purification of sufficient proteins for biophysical experiments. We report expression successes amongst a collection of enterococcal vancomycin resistance membrane proteins: VanTG, VanTG-M transporter domain, VanZ and the previously characterised VanS (A-type) histidine protein kinase (HPK). Using the same strategy, we report on the successful amplification and purification of intact BlpH and ComD2 HPKs of Streptococcus pneumoniae. Near-UV circular dichroism revealed both recombinant proteins bound their pheromone ligands BlpC and CSP2. Interestingly, CSP1 also interacted with ComD. Finally, we evaluate the alternative strategy for studying sensory HPKs involving isolated soluble sensory domain fragments, exemplified by successful production of VicKESD of Enterococcus faecalis VicK. Purified VicKESD possessed secondary structure post-purification. Thermal denaturation experiments using far-UV CD, a technique which can be revealing regarding ligand binding, revealed that: (a) VicKESD denaturation occurs between 15 and 50 °C; and (b) reducing conditions did not detectably affect denaturation profiles suggesting reducing conditions per se are not directly sensed by VicKESD. Our findings provide information on a modified strategy for the successful expression, production and/or storage of bacterial membrane HPKs, AMR proteins and sensory domains for their future crystallisation, and ligand binding studies
Mitochondrial sequence data reveal population structure within Pustulosa pustulosa
Unionid mussels are among the most imperiled group of organisms in North America, and Pustulosa pustulosa is a freshwater species with a relatively wide latitudinal distribution that extends from southern Ontario, Canada, to Texas, USA. Considerable morphological and geographic variation in the genus Pustulosa (formerly Cyclonaias) has led to uncertainty over species boundaries, and recent studies have suggested revisions to species-level classifications by synonymizing C. aurea, C. houstonensis, C. mortoni, and C. refulgens with C. pustulosa (currently P. pustulosa). Owing to its wide range and shallow phylogenetic differentiation, we analyzed individuals of P. pustulosa using mitochondrial DNA sequence data under a population genetics framework. We included 496 individuals, which were comprised of 166 samples collected during this study and 330 additional sequences retrieved from GenBank. Pairwise ΦST measures based on ND1 data suggested there may be up to five major geographic groups present within P. pustulosa. Genetic differentiation between regions within Texas was higher compared to populations from the Mississippi and Great Lakes populations, which may reflect differences in historical connectivity. Mitochondrial sequence data also revealed varying demographic histories for each major group suggesting each geographic region has also experienced differential population dynamics in the past. Future surveys should consider exploring variation within species after phylogeographic delimitation has been performed. In this study, we begin to address this need for freshwater mussels via the P. pustulosa system
The Concise Guide to PHARMACOLOGY 2023/24:Nuclear hormone receptors
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p
The Concise Guide to Pharmacology 2019/20: Ion Channels
The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14749. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
- …