16 research outputs found

    Signals of the QCD Critical Point in Hydrodynamic Evolutions

    Full text link
    The presence of a critical point in the QCD phase diagram can deform the trajectories describing the evolution of the expanding fireball in the QCD phase diagram. The deformation of the hydrodynamic trajectories will change the transverse velocity dependence of the proton-antiproton ratio when the fireball passes in the vicinity of the critical point. An unusual transverse velocity dependence of the anti-proton/proton ratio in a narrow beam energy window would thus signal the presence of the critical point.Comment: 4 pages, 6 figures, 21st International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2009) 30 Mar - 4 Apr 2009, Knoxville, Tennesse

    Thermal fluctuations in the interacting pion gas

    Get PDF
    We derive the two-particle fluctuation correlator in a thermal gas of pi-mesons to the lowest order in an interaction due to a resonance exchange. A diagrammatic technique is used. We discuss how this result can be applied to event-by-event fluctuations in heavy-ion collisions, in particular, to search for the critical point of QCD. As a practical example, we determine the shape of the rapidity correlator.Comment: 12 pages, 4 figures, RevTe

    Worldline Monte Carlo for fermion models at large N_f

    Full text link
    Strongly-coupled fermionic systems can support a variety of low-energy phenomena, giving rise to collective condensation, symmetry breaking and a rich phase structure. We explore the potential of worldline Monte Carlo methods for analyzing the effective action of fermionic systems at large flavor number N_f, using the Gross-Neveu model as an example. Since the worldline Monte Carlo approach does not require a discretized spacetime, fermion doubling problems are absent, and chiral symmetry can manifestly be maintained. As a particular advantage, fluctuations in general inhomogeneous condensates can conveniently be dealt with analytically or numerically, while the renormalization can always be uniquely performed analytically. We also critically examine the limitations of a straightforward implementation of the algorithms, identifying potential convergence problems in the presence of fermionic zero modes as well as in the high-density region.Comment: 40 pages, 13 figure

    Нераспознанный дооперационный инфаркт миокарда как причина интраоперационного разрыва левого желудочка

    Get PDF
    In task present 2 case intraoperative left ventricular rupture, an AMI, not indeterminate on clinic. This case was present of new pathogenic mechanism of left ventricular rupture.В статье представлены 2 случая интраоперационных разрывов левого желудочка, возникшие в результате инфаркта миокарда, нераспознанного на дооперационном этапе, что позволяет рассматривать последний как ранее не описанный патогенетический механизм в развитии разрывов левого желудочка

    The Quark-Gluon Plasma in a Finite Volume

    Full text link
    The statistical mechanics of quarks and gluons are investigated within the context of the canonical ensemble. Recursive techniques are developed which enforce the exact conservation of baryon number, total isospin, electric charge, strangeness, and color. Bose and Fermi-Dirac statistics are also accounted for to all orders. The energy, entropy and particle number densities are shown to be significantly reduced for volumes less than 5 cubic fm.Comment: 8 pages, 3 figure

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    Global Properties of Nucleus-Nucleus Collisions

    No full text
    84 pages, 34 figures; Lecture given at the QGP Winter School, Jaipur, India, Feb.1-3, 2008; To appear in Springer Lecture Notes in PhysicsIn this lecture note, we discuss the global properties of nucleus-nucleus collisions. After a brief introduction to heavy-ion collisions, we introduce useful kinematics and then discuss the bulk hadron production in A+A collisions. At the end we discuss the hadronization and hadronic freeze-out in A+A collisions. We have tried to cover the topic from very fundamental arguments especially for the beginners in the field. We also give very useful formulae frequently used by experimentalists, from a first principle derivation
    corecore