24 research outputs found

    La modalidad de urgencia manifiesta como causal de contratación directa en tiempos de pandemia causada por Covid 19

    Get PDF
    La contratación directa como modalidad de selección permite a las entidades estatales adquirir bienes y servicios de forma directa y pronta, sin necesidad de adelantar convocatorias públicas, siempre que se esté en presencia de alguno de los eventos establecidos en el artículo 2 numeral 4 de la ley 1150 de 2007. Uno de estos eventos es la urgencia manifiesta, la cual permite a la entidad la utilización de esta modalidad cuando se encuentre frente a situaciones que impliquen la configuración de una circunstancia de calamidad pública o constitutivas de fuerza mayor o desastres que requieran actuaciones inmediatas por parte de las entidades de orden nacional, departamental y municipal.Universidad Libre- Facultad de Derecho- Especialización en Derecho AdministrativoDirect contracting as a selection modality allows state entities to acquire godos and services directly and promptly, without the need to advance public calls, if one is in the presence of any of the events established in article 2, numeral 4 of the law. 1150 of 2007. One of these events is the manifest urgency, which allows the entity to use this modality when it is faced with situations that imply the configuration of a circumstance of publie calamity or constituting force majcure or disasters that require actions immediate actions by national, departmental and municipal entities

    Diagnosis of Genetic White Matter Disorders by Singleton Whole-Exome and Genome Sequencing Using Interactome-Driven Prioritization

    Get PDF
    Background and Objectives Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. Methods A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. Results We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. Discussion Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Advances in disease-modifying pharmacotherapies for the treatment of amyotrophic lateral sclerosis

    No full text
    International audienceIntroduction: To date, riluzole and edaravone are the only two drugs that have successfully passed clinical trials for the treatment of Amyotrophic Lateral Sclerosis (ALS). Unfortunately, both drugs exhibit very modest effects. Most other drugs have failed at phase III to show significant effects in phase III when tested in larger cohorts. This pattern necessitates improvements in the approach to ALS pharmacotherapy.Areas covered: The authors discuss the two approved drugs, as well as several examples of drug candidates whose clinical trials did not demonstrate efficacy in phase III. Post-hoc analyses reveal that future clinical trials should include disease-staging procedures, longer-term trials to correctly assess survival, genetic studies of participants to aid in stratification, and more similarity between the protocols on preclinical models and clinical trials. Finally, they discuss the trials in process that demonstrate some of these suggestions and improvements.Expert opinion: The approval of riluzole and edaravone was essentially a desperate attempt to provide urgent pharmacotherapy to the ALS community. To evolve toward more efficient therapies, we must conduct clinical trials with optimal stratification based on rapid/slow progressors and cognitive decline. Pharmaco-metabolomics should allow for the identification of biomarkers that are adapted for a given drug

    Effect of familial clustering in the genetic screening of 235 French ALS families

    No full text
    International audienceObjectives To determine whether the familial clustering of amyotrophic lateral sclerosis (ALS) cases and the phenotype of the disease may help identify the pathogenic genes involved. Methods We conducted a targeted next-generation sequencing analysis on 235 French familial ALS (FALS), unrelated probands to identify mutations in 30 genes linked to the disease. The genealogy, that is, number of cases and generations with ALS, gender, age, site of onset and the duration of the disease were analysed. Results Regarding the number of generations, 49 pedigrees had only one affected generation, 152 had two affected generations and 34 had at least three affected generations. Among the 149 pedigrees (63.4%) for which a deleterious variant was found, an abnormal G4C2 expansion in C9orf72 was found in 98 cases as well as SOD1 , TARBP or FUS mutations in 30, 9 and 7 cases, respectively. Considering pedigrees from the number of generations, abnormal G4C2 expansion in C9orf72 was more frequent in pedigrees with pairs of affected ALS cases, which represented 65.2% of our cohort. SOD1 mutation involved all types of pedigrees. No TARDBP nor FUS mutation was present in monogenerational pedigrees. TARDBP mutation predominated in bigenerational pedigrees with at least three cases and FUS mutation in multigenerational pedigrees with more than seven cases, on average, and with an age of onset younger than 45 years. Conclusion Our results suggest that familial clustering, phenotypes and genotypes are interconnected in FALS, and thus it might be possible to target the genetic screening from the familial architecture and the phenotype of ALS cases

    Tauroursodeoxycholic acid in patients with amyotrophic lateral sclerosis: The TUDCA-ALS trial protocol

    No full text
    Background: Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative rare disease that affects motor neurons in the brain, brainstem, and spinal cord, resulting in progressive weakness and atrophy of voluntary skeletal muscles. Although much has been achieved in understanding the disease pathogenesis, treatment options are limited, and in Europe, riluzole is the only approved drug. Recently, some other drugs showed minor effects. Methods: The TUDCA-ALS trial is a phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The study aims to enroll 320 patients in 25 centers across seven countries in Europe. Enrolled patients are randomized to one of two treatment arms: TUDCA or identical placebo by oral route. The study measures disease progression during the treatment period and compares it to natural progression during a no-treatment run-in phase. Clinical data and specific biomarkers are measured during the trial. The study is coordinated by a consortium composed of leading European ALS centers. Conclusion: This trial is aimed to determine whether TUDCA has a disease-modifying activity in ALS. Demonstration of TUDCA efficacy, combined with the validation of new biomarkers, could advance ALS patient care
    corecore