30 research outputs found

    R&D Strategies for New Automotive Technologies: Insight from fuel cells

    Get PDF
    ABSTRACT This study analyzes how the automobile industry is pursuing the development of fuel cells as a new propulsion technology for automobiles. Fuel cells represent a fundamentally different powertrain technology that competes technically with the internal combustion engine, which has traditionally been a core competence of automobile manufacturers. The emergence of fuel cells provides a threat to automakers? competence in internal combustion engines, but also presents an opportunity for establishing a competitive position and gaining competence in a new technology. The study gives insights into strategic issues that automakers face through fundamentally new technologies. The key questions analyzed in this study are how new technology such as fuel cells can be identified by automakers, how automakers develop and acquire competence in such a technology that has not been part of the traditional technology portfolio of automakers, and how automakers can keep control over this new technology and derive value as it moves closer to commercialization. Fuel cells were historically first applied in the aerospace industry, and have only been developed for use in automobiles after a technological breakthrough resulted in significant increase of power density and cost reduction. Automakers with ties to the aerospace industry were among the first to recognize the potential of the breakthrough technology, and such early identification gave these companies a lead in R&D investment and patenting. This example of technology dynamics of fuel cells supports the importance of early identification of new technologies and links to related industries as a source of such technologies for the automobile industry. The next phase of fuel cell developments is characterized by an attempt of automakers to acquire competence in fuel cells. Three different organizational approaches are observed among the automakers: internal development of fuel cells, collaborative research, and a wait-and-see approach that favors licensing of the technology. The design of collaborative research alliances, such as the partnership between DaimlerChrysler, Ford and Ballard, suggests that technology that is new to the automobile industry needs to be viewed from a systems perspective. While early research activity focused on the fuel cell only, the establishment of an alliance provided an effective way of combining technical competence on all components of a fuel cell powertrain system. The research alliance also broadens the coverage of intellectual property with patents, but this also limits the control of automakers over the technology. The last part of the report discusses implications for automakers regarding the ability to control and derive value in the case the technology is successfully commercialized. It is argued that new suppliers are likely to participate in a future market for fuel cell powertrains, according to their technical competence and role as early participants in the development of fuel cell components. Automakers can keep control over the technology and participate in a potential market for fuel cells by becoming system integrators, and through continued development of key fuel cell components

    Economic performance of product and process firms

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Engineering Systems Division, 2000.Includes bibliographical references (leaves 169-175).This dissertation refines the understanding of economic performance of firms, using data and practical insights from the automotive supplier industry. Firms in this industry are characterized as either product or process firms, reflecting the importance of technological capabilities in manufacturing industries. Specialized capabilities in product markets define product firms, whereas capabilities in materials processing and manufacturing technologies define process firms. A measure of technological coherence is introduced, which expresses the relatedness of capabilities of a firm. The measure is based on a concentration index and a hierarchical classification of products and processes in the automotive supplier industry. Using this measure of coherence, analysis shows that firms with stronger coherence are able to better exploit corporate synergies and therefore achieve superior economic performance. That is, firms focusing on a specialized and related set of capabilities are able to outperform less coherent firms. Analysis further reveals a significant difference in performance between product and process firms. Product firms in the automotive supplier industry exhibit negative returns to scale, whereas process firms exhibit positive returns to scale. These differences are attributed to the underlying corporate logic of product and process firms, supported with studies of value creation in corporate acquisitions and interviews with corporate executives. The findings have implications for strategic choices of firms, such as choosing between product and process focus, and choosing between focus and diversification. The dissertation contributes to strategic management theory with a framework of product and process firms that is based on a technological view of the firm, and with a measure of technological coherence that facilitates empirical research of corporate coherence.by Patrick P. Steinemann.Ph.D

    Volatile chemical emissions from fragranced baby products

    Get PDF
    Fragranced consumer products have been associated with adverse effects on human health. Babies are exposed to a variety of fragranced consumer products, which can emit numerous volatile organic compounds (VOCs), some considered potentially hazardous. However, fragranced baby products are exempt from disclosure of all ingredients. Consequently, parents and the public have little information on product emissions. This study investigates VOCs emitted from a range of fragranced baby products, including baby hair shampoos, body washes, lotions, creams, ointments, oils, hair sprays, and fragrance. The products were analysed using gas chromatography/mass spectrometry (GC/MS) headspace analysis. Of the 42 baby products tested, 21 products made claims of green, organic, or all-natural. Results of the analysis found 684 VOCs emitted collectively from the 42 products, representing 228 different VOCs. Of these 684 VOCs, 207 are classified as potentially hazardous under federal regulations, representing 43 different VOCs. The most common VOCs emitted were limonene, acetaldehyde, ethanol, alpha-pinene, linalool, beta-myrcene, acetone, and beta-pinene. A comparison between ingredients emitted and ingredients listed reveals that only 5% of the 684 VOCs, including 12% of 207 potentially hazardous VOCs, were listed on the product label, safety data sheet, or website. More than 95% of both green and regular products emitted one or more potentially hazardous VOCs. Further, emissions of the most prevalent VOCs from green, organic, or all-natural products were not significantly different from regular products. Results from this study can help improve public awareness about emissions from baby products, with the aim to reduce pollutant exposure and potential adverse effects on babies

    Assessing health impacts within environmental impact assessments: An opportunity for public health globally which must not remain missed

    Get PDF
    Within the member states of the United Nations 190 of 193 have regulated Environmental Impact Assessments (EIA) which is a systematic process to prevent and mitigate the potential environmental impacts of industry development projects before these occur. However, the routine and comprehensive assessment of health impacts within EIAs remains underdeveloped. Focusing, as an example, on the risks to global health from the global shift in the mining industry towards Low and Middle Income Countries LMIC), this viewpoint details why connecting with EIA is an essential task for the health system. Although existing knowledge is out of date in relation to global practice we identify how health has been included, to some extent, in High Income Country EIAs and the institutional requirements for doing so. Using arguments identified by industry themselves about requiring a ‘social license to operate’, we conclude that EIA regulations provide the best current mechanism to ensure health protection is a core aspect in the decision making process to approve projects

    Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content

    Get PDF
    LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects
    corecore