146 research outputs found

    Statistical considerations for adiabatic compression testing

    Get PDF
    ASTM G74 has been used for many years to evaluate nonmetallic materials and components for oxygen service. When originally published in 1982, this standard considered a “passing” result to be zero ignitions of a material out of 20 samples tested. However, researchers have recognized that the originally prescribed methodology results in a cumulative binomial confidence of about 36 % for a passing result. As a result, the low confidence for a passing result could be potentially misleading when results are used to qualify materials or components for oxygen service, unless the data is analyzed through available statistical approaches. This paper summarizes research performed to evaluate the statistical aspects of gaseous fluid impact testing so that ignition probabilities can be considered in the test methodology. Data derived by the test method are evaluated by a logistic regression approach in order to describe the behavior of the materials being tested and to compare different materials or test conditions. Therefore, the statistical aspects of the test are shown to be crucial to understanding and applying the data obtained. This paper demonstrates that the ASTM G74 test and all international tests of a similar nature because all use the same test embodiment and are inherently probabilistic and subject to variability that seems random without application of appropriate statistical analysis. However, meaningful results can be developed when the appropriate statistical tools are utilized. Logistic regression analysis is only one available method to analyze binomial data (ignition/no-ignition); but it is a powerful tool that can help to bring clarity to the trends in data that are obscured by sometimes seemingly random behavior

    Evaluation of a near-adiabatic compression process to increase fire safety within oxygen systems, focusing on non-metals

    Get PDF
    One of the most important ignition mechanisms initiating burning in nonmetallic materials, which is directly linked to many large oxygen system fires, is the rapid or near-adiabatic compression of oxygen against a nonmetallic material. Adiabatic compression testing of components and systems is utilized worldwide to determine their compatibility in oxygen systems. However, limited research is available on how adiabatic compression energy is transferred to nonmetallic materials, leading to ignition. By characterizing the transfer of heat from hot compressed oxygen into the non-metal that occurs prior to ignition, an analytical model will be developed to describe this process. A transient model of non-metals in a pure oxygen environment is considered. The development of the mathematical model that simulates the behavior of non-metal ignition when subjected to a near-adiabatic compression process is presented. The ignition model investigates various physical mechanisms, such as heat transfer mechanisms, and reaction rates to determine processes involved during the transfer of heat from hot oxygen to a non-metal prior to ignition. The focus of this model is the gas/solid interface. This research is currently ongoing. Future work will validate the model experimentally before determining maximum safe compression rates to prevent the ignition of different classes of nonmetallic materials. The significance of this research is to increase the fire safety of oxygen systems by establishing a theoretical model to reduce, or eliminate, one of the most common mechanisms of ignition found within oxygen systems—that is, adiabatic compression

    Effects of an Alpha-4 Integrin Inhibitor on Restenosis in a New Porcine Model Combining Endothelial Denudation and Stent Placement

    Get PDF
    Restenosis remains the main complication of balloon angioplasty and/or stent implantation. Preclinical testing of new pharmacologic agents preventing restenosis largely rely on porcine models, where restenosis is assessed after endothelial abrasion of the arterial wall or stent implantation. We combined endothelial cell denudation and implantation of stents to develop a new clinically relevant porcine model of restenosis, and used this model to determine the effects of an α4 integrin inhibitor, ELN 457946, on restenosis. Balloon-angioplasty endothelial cell denudation and subsequent implantation of bare metal stents in the left anterior descending coronary, iliac, and left common carotid arteries was performed in domestic pigs, treated with vehicle or ELN 457946, once weekly via subcutaneous injections, for four weeks. After 1 month, histopathology and morphometric analyses of the arteries showed complete healing and robust, consistent restenotic response in stented arteries. Treatment with ELN 457946 resulted in a reduction in the neointimal response, with decreases in area percent stenosis between 12% in coronary arteries and 30% in peripheral vessels. This is the first description of a successful pig model combining endothelial cell denudation and bare metal stent implantation. This new double injury model may prove particularly useful to assess pharmacological effects of drug candidates on restenosis, in coronary and/or peripheral arteries. Furthermore, the ELN 457946 α4 integrin inhibitor, administered subcutaneously, reduced inflammation and restenosis in stented coronary and peripheral arteries in pigs, therefore representing a promising systemic therapeutic approach in reducing restenosis in patients undergoing angioplasty and/or stent implantation

    Prototype Testing Results of Charged Particle Detectors and Critical Subsystems for the ESRA Mission to GTO

    Get PDF
    The Experiment for Space Radiation Analysis (ESRA) is the latest of a series of Demonstration and Validation (DemVal) missions built by the Los Alamos National Laboratory, with the focus on testing a new generation of plasma and energetic paritcle sensors along with critical subsystems. The primary motivation for the ESRA payloads is to minimize size, weight, power, and cost while still providing necessary mission data. These new instruments will be demonstrated by ESRA through ground-based testing and on-orbit operations to increase their technology readiness level such that they can support the evolution of technology and mission objectives. This project will leverage a commercial off-the-shelf CubeSat avionics bus and commercial satellite ground networks to reduce the cost and timeline associated with traditional DemVal missions. The system will launch as a ride share with the DoD Space Test Program to be inserted in Geosynchronous Transfer Orbit (GTO) and allow observations of the Earth\u27s radiation belts. The ESRA CubeSat consists of two science payloads and several subsystems: the Wide field-of-view Plasma Spectrometer, the Energetic Charged Particle telescope, high voltage power supply, payload processor, flight software architecture, and distributed processor module. The ESRA CubeSat will provide measurements of the plasma and energetic charged particle populations in the GTO environment for ions ranging from ~100 eV to ~1000 MeV and electrons with energy ranging from 100 keV to 20 MeV. ESRA will utilize a commercial 12U bus and demonstrate a low-cost, rapidly deployable spaceflight platform with sufficient SWAP to enable efficient measurements of the charged particle populations in the dynamic radiation belts

    The Experiment for Space Radiation Analysis: Probing the Earth\u27s Radiation Belts Using a CubeSat Platform

    Get PDF
    The Experiment for Space Radiation Analysis (ESRA) is the latest of a series of Demonstration and Validation missions built by the Los Alamos National Laboratory, with the focus on testing a new generation of plasma and energetic particle sensors. The primary motivation for the ESRA payloads is to minimize size, weight, power, and cost while still providing necessary mission data. These new instruments will be demonstrated by ESRA through testing and on-orbit operations to increase their technology readiness level such that they can support the evolution of technology and mission objectives. This project will leverage a commercial off-the-shelf CubeSat avionics bus and commercial satellite ground networks to reduce the cost and timeline associated with traditional DemVal missions. The system will launch as a ride share with the DoD Space Test Program to be inserted in Geosynchronous Transfer Orbit (GTO) and allow observations of the Earth’s radiation belts. The ESRA CubeSat consists of two science payloads and several subsystems: the Wide-field-of-view Plasma Spectrometer, the Energetic Charged Particle telescope, high voltage power supply, payload processor, flight software architecture, and distributed processor module. The ESRA CubeSat will provide measurements of the plasma and energetic charged particle populations in the GTO environment for ions ranging from ~100 eV to ~1000 MeV and electrons with energy ranging from 100 keV to 20 MeV. ESRA will utilize a commercial 12U bus and demonstrate a low-cost, rapidly deployable spaceflight platform with sufficient SWAP to enable efficient measurements of the energetic particle populations in the dynamic radiation belts

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
    corecore