12 research outputs found

    Patients with Small Acetabular Cartilage Defects Caused by Femoroacetabular Impingement Do Not Benefit from Microfracture

    Get PDF
    Objective: According to current recommendations, large cartilage defects of the hip over 2 cm2 are suggested to undergo autologous chondrocyte transplantation (ACT), while small defects should be treated with microfracture. We investigated if patients with small chondral defects of the hip joint (≤100 mm2 ) actually benefit from microfracture. Design: In this retrospective multicenter cohort study 40 patients with focal acetabular cartilage defects smaller than 100 mm2 and of ICRS grade ≥2 caused by femoroacetabular impingement were included. Twenty-six unrandomized patients underwent microfracture besides treatment of the underlying pathology; in 14 patients cartilage lesions were left untreated during arthroscopy. Over a mean follow-up of 28.8 months patient-reported outcome was determined using the iHOT33 (international hip outcome tool) and the VAS (visual analog scale) for pain. Results: The untreated group showed a statistically significant improvement of the iHOT33 after 12 (p = 0.005), 24 (p = 0.019), and 36 months (p = 0.002) compared to the preoperative score, whereas iHOT33 in the microfracture group did not reveal statistically significant changes over time. There was no significant difference between both groups on any time point. Regarding pain both groups did not show a significant improvement over time in the VAS. Conclusion: The subjective outcome of patients with small cartilage defects of the hip (≤100 mm2 ) improves 12 months after arthroscopic FAIS surgery without any cartilage treatment. However, no improvement could be seen after microfracture. Therefore, a reserved surgical treatment for small cartilage defects of the hip under preservation of the subchondral bone is recommended especially if a simultaneous impingement correction is performed

    Patients with Small Acetabular Cartilage Defects Caused by Femoroacetabular Impingement Do Not Benefit from Microfracture

    Get PDF
    Objective: According to current recommendations, large cartilage defects of the hip over 2 cm2 are suggested to undergo autologous chondrocyte transplantation (ACT), while small defects should be treated with microfracture. We investigated if patients with small chondral defects of the hip joint (≤100 mm2) actually benefit from microfracture. Design: In this retrospective multicenter cohort study 40 patients with focal acetabular cartilage defects smaller than 100 mm2 and of ICRS grade ≥2 caused by femoroacetabular impingement were included. Twenty-six unrandomized patients underwent microfracture besides treatment of the underlying pathology; in 14 patients cartilage lesions were left untreated during arthroscopy. Over a mean follow-up of 28.8 months patient-reported outcome was determined using the iHOT33 (international hip outcome tool) and the VAS (visual analog scale) for pain. Results: The untreated group showed a statistically significant improvement of the iHOT33 after 12 (p = 0.005), 24 (p = 0.019), and 36 months (p = 0.002) compared to the preoperative score, whereas iHOT33 in the microfracture group did not reveal statistically significant changes over time. There was no significant difference between both groups on any time point. Regarding pain both groups did not show a significant improvement over time in the VAS. Conclusion: The subjective outcome of patients with small cartilage defects of the hip (≤100 mm2) improves 12 months after arthroscopic FAIS surgery without any cartilage treatment. However, no improvement could be seen after microfracture. Therefore, a reserved surgical treatment for small cartilage defects of the hip under preservation of the subchondral bone is recommended especially if a simultaneous impingement correction is performed

    Feasibility of arthroscopic autologous chondrocyte implantation in the hip using an injectable hydrogel

    No full text
    Introduction: In the long term the treatment of articular cartilage defects of the hip has the most direct impact on the postoperative outcome and should diminish degenerative changes caused by different pathologies. The purpose of this prospective feasibility study is to describe technical aspects of arthroscopic, injectable autologous chondrocyte implantation in the hip and to report the short-term outcome. Methods: Full-thickness cartilage defects of 13 patients were treated arthroscopically with an injectable autologous chondrocyte transplantation product (Novocart Inject, Tetec) in a 2-step surgical procedure. Patient-related outcome was assessed with iHOT 33, EQ-5D and Non Arthritic Hip Score at baseline (day before transplantation), after 6 weeks and 3, 6 and 12 months. Results: 13 out of 13 patients (all men) with a mean age of 32.7 +/- 6.9 years and an average defect size of 1.9 +/- 1.0 cm(2) were available for follow-up after a mean of 12 months (range 6-24 months). All defects were located on the acetabulum and 11 were associated with a labral lesion of 2.9 hours size. Femoroacetabular impingement (10 cam, 2 combined, 1 pincer) was the cause of all defects. An overall statistically significant improvement was observed for all assessment scores. Conclusions: In this study we present the feasibility and short-term data of an arthroscopic injectable autologous chondrocyte transplant as a treatment option for full-thickness cartilage defects of the hip. All patient-administered assessment scores demonstrated an increase in activity level, improvement in quality of life and reduction of pain after a 12-month follow-up. Further randomised controlled trails with long-term follow-up and additional morphological assessment are needed

    Prevalence of Cam and Pincer Deformities in the X-Rays of Asymptomatic Individuals

    No full text
    Objective. The presence of radiological signs of femoroacetabular impingement (FAI) is not necessarily associated with symptoms. Hence, the prevalence of cam and pincer deformities in the overall population may be underestimated. The purpose of this study was to screen an unselected cohort of people without hip symptoms for native radiological signs of cam and pincer deformities to determine their actual prevalence. Materials and Methods. 110 asymptomatic patients had AP pelvis X-rays and cross-table hip X-rays performed. We evaluated the images for the presence of cross-over signs and measured lateral center edge (LCE) angles, alpha angles (α-angles), and femoral offset ratios. Results. Positive cross-over signs were seen in 34%; LCE angles > 40° in 13%; and femoral offset ratios 50°. Male patients showed significantly higher α-angles, lower offset ratios, and a higher prevalence of cross-over signs. In contrast, female patients had significantly higher LCE angles. Conclusion. According to our data, radiological signs of cam and pincer deformities are common in asymptomatic people. In clinical practice, patients presenting with hip pain and radiological signs of FAI should undergo further diagnostic evaluation. However, in asymptomatic patients, no further evaluation is recommended

    Report on a large animal study with Göttingen Minipigs where regenerates and controls for articular cartilage were created in a large number. Focus on the conditions of the operated stifle joints and suggestions for standardized procedures.

    No full text
    The characterization of regenerated articular cartilage (AC) can be based on various methods, as there is an unambiguous accepted criterion neither for the natural cartilage tissue nor for regenerates. Biomechanical aspects should be considered as well, leading to the need for more equivalent samples. The aim of the study was to describe a large animal model where 8 specimens of regenerated AC can be created in one animal plus the impact of two surgeries on the welfare of the animals. The usefulness of the inclusion of a group of untreated animals (NAT) was to analyzed. Based on the histological results the conditions of the regenerates were to be described and the impact on knee joints were to be explored in terms of degenerative changes of the cartilage. The usefulness of the statistical term "effect size" (ES) will be explained with histological results. We analyzed an animal model where 8 AC regenerates were obtained from one Göttingen Minipig, on both sides of the trochleae. 60 animals were divided into 6 groups of 10 each, where the partial thickness defects in the trochlea were filled with matrices made of Collagen I with or without autologous chondrocytes or left empty over the healing periods of 24 and 48 weeks. One additional control group consisting of 10 untreated animals was used to provide untouched "external" cartilage. We harvested 560 samples of regenerated tissue and "external" controls, besides that, twice the number of further samples from other parts of the joints referred to as "internal" controls were also harvested. The animals recovered faster after the 1st operation when the defects were set compared to the 2nd operation when the defects were treated. 9% of all animals were lost. Other complications were for example superficial infections, seroma, diarrhea, febrile state and an injury of a claw. The histological results of the treatments proved the robustness of the study design where we included an "external" control group (NAT) in which the animals were not operated. Comparable significant differences between treated groups and the NAT group were detected both after ½ year and after 1 year. Spontaneous regenerated AC as control revealed differences after an observation time of nearly 1 year. The impact of the treatment on cartilage adjacent to the defect as well as the remaining knee joint was low. The ES was helpful for planning the study as it is shown that the power of a statistical comparison seems to be more influenced by the ES than by the sample size. The ranking of the ES was done exemplarily, listing the results according to their magnitude, thus making the results comparable. We were able to follow the 3 R requirements also in terms of a numerical reduction of animals due to the introduction of a group of untreated animals. This makes the model cost effective. The presented study may contribute as an improvement of the standardization of large animal models for research and regulatory requirements for regenerative therapies of AC
    corecore