324 research outputs found

    Spectroscopy of Candidate Members of the Eta Cha and MBM12 Young Associations

    Full text link
    We present an analysis of candidate members of the Eta Cha and MBM 12A young associations. For an area of 0.7 deg^2 toward Eta Cha, we have performed a search for members of the association by combining JHK_s photometry from 2MASS and i photometry from DENIS with followup optical spectroscopy at Magellan Observatory. We report the discovery of three new members with spectral types of M5.25-M5.75, corresponding to masses of 0.13-0.08 M_sun by theoretical evolutionary models. Two and three of these members were found independently by Lyo and coworkers and Song and coworkers, respectively. Meanwhile, no brown dwarfs were detected in Eta Cha down to the completeness limit of 0.015 M_sun. For MBM 12A, we have obtained spectra of three of the remaining candidate members that lacked spectroscopy at the end of the survey by Luhman, all of which are found to be field M dwarfs. Ogura and coworkers have recently presented four "probable" members of MBM 12A. However, two of these objects were previously classified as field dwarfs by the spectroscopy of Luhman. In this work, we find that the other two objects are field dwarfs as well.Comment: to be published in The Astrophysical Journal, 19 pages, 7 figure

    The not-so-massive black hole in the microquasar GRS1915+105

    Get PDF
    We present a new dynamical study of the black hole X-ray transient GRS1915+105 making use of near-infrared spectroscopy obtained with X-shooter at the VLT. We detect a large number of donor star absorption features across a wide range of wavelengths spanning the H and K bands. Our 24 epochs covering a baseline of over 1 year permit us to determine a new binary ephemeris including a refined orbital period of P=33.85 +/- 0.16 d. The donor star radial velocity curves deliver a significantly improved determination of the donor semi-amplitude which is both accurate (K_2=126 +/- 1 km/s) and robust against choice of donor star template and spectral features used. We furthermore constrain the donor star's rotational broadening to vsini=21 +/-4 km/s, delivering a binary mass ratio of q=0.042 +/- 0.024. If we combine these new constraints with distance and inclination estimates derived from modelling the radio emission, a black hole mass of M_BH=10.1 +/- 0.6 M_sun is inferred, paired with an evolved mass donor of M_2=0.47 +/- 0.27 M_sun. Our analysis suggests a more typical black hole mass for GRS1915+105 rather than the unusually high values derived in the pioneering dynamical study by Greiner et al. (2001). Our data demonstrate that high-resolution infrared spectroscopy of obscured accreting binaries can deliver dynamical mass determinations with a precision on par with optical studies

    A Parallax Distance to the Microquasar GRS 1915+105 and a Revised Estimate of its Black Hole Mass

    Full text link
    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the micro quasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6 (+2.0,-1.6) kpc and a revised estimate for the mass of the black hole of 12.4 (+2.0,-1.8) Msun. GRS 1915+105 is at about the same distance as some HII regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is -3.19 +/- 0.03 mas/y and -6.24 +/- 0.05 mas/y toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 +/-24 km/s at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60 +/- 5 deg and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole >2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.Comment: 20 pages; 2 tables; 6 figure

    Optical Photometry and Spectroscopy of the Accretion-Powered Millisecond Pulsar HETE J1900.1-2455

    Get PDF
    We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1-2455. Our R-band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Halpha emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km/s, placing a lower limit of 0.05 Msun on the secondary mass. For a 1.4 Msun primary, this implies that the orbital inclination is low, < 20 degrees. Utilizing the observed relationship between the secondary mass and orbital period in short period cataclysmic variables, we estimate the secondary mass to be ~0.085 Msun, which implies an upper limit of ~2.4 Msun for the primary mass.Comment: 8 pages, 6 figures; Accepted for publication in MNRAS. Minor revisions to match final published versio

    The component masses of the cataclysmic variable V347 Puppis

    Get PDF
    We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of KR= 198 ± 5 km s−1. The rotational velocity of the secondary star in V347 Pup is found to be v sin i= 131 ± 5 km s−1 and the system inclination is i= 840 ± 23. From these parameters we obtain masses of M1= 0.63 ± 0.04 M⊙ for the white dwarf primary and M2= 0.52 ± 0.06 M⊙ for the M0.5V secondary star, giving a mass ratio of q= 0.83 ± 0.05. On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc

    A Doppler Map and Mass-ratio Constraint for the Black-Hole X-ray Nova Ophiuchi 1977

    Get PDF
    We have reanalyzed Keck observations of Nova Oph 1977 to extend the work done by Filippenko et al. (1997), who recently determined a mass function f(M_x) = 4.86 +/- 0.13 M_o for the compact object. We constrain the rotational broadening, v sin i < 79 km/s, at the 90% confidence level, which gives a mass ratio q < 0.053. The K-type companion star of Nova Oph 1977 contributes 28-37% of the light at red wavelengths. The abnormal LiI 6708 absorption line from the companion star is not detected (EW < 0.12 A), in contrast to four other X-ray binaries. An Halpha Doppler image of the system shows emission from the companion star in addition to the accretion disk.Comment: 14 pages of text and tables plus 3 figures, to appear in the Astronomical Journa

    A J-band detection of the donor star in the dwarf nova OY Carinae, and an optical detection of its `iron curtain'

    Get PDF
    Purely photometric models can be used to determine the binary parameters of eclipsing cataclysmic variables with a high degree of precision. However, the photometric method relies on a number of assumptions, and to date there have been very few independent checks of this method in the literature. We present time-resolved spectroscopy of the P=90.9 min eclipsing cataclysmic variable OY Carinae obtained with X-shooter on the VLT, in which we detect the donor star from K I lines in the J-band. We measure the radial velocity amplitude of the donor star K2 = 470.0 +/- 2.7 km/s, consistent with predictions based upon the photometric method (470 +/- 7 km/s). Additionally, the spectra obtained in the UVB arm of X-shooter show a series of Fe I and Fe II lines with a phase and velocity consistent with an origin in the accretion disc. This is the first unambiguous detection at optical wavelengths of the `iron curtain' of disc material which has been previously reported to veil the white dwarf in this system. The velocities of these lines do not track the white dwarf, reflecting a distortion of the outer disc that we see also in Doppler images. This is evidence for considerable radial motion in the outer disk, at up to 90 km/s towards and away from the white dwarf.Comment: MNRAS accepted. 11 pages with 10 figures and 2 table

    The physical properties of AM CVn stars: new insights from Gaia DR2

    Get PDF
    AM CVn binaries are hydrogen deficient compact binaries with an orbital period in the 5-65 min range and are predicted to be strong sources of persistent gravitational wave radiation. Using Gaia Data Release 2, we present the parallaxes and proper motions of 41 out of the 56 known systems. Compared to the parallax determined using the HST Fine Guidance Sensor we find that the archetype star, AM CVn, is significantly closer than previously thought. This resolves the high luminosity and mass accretion rate which models had difficulty in explaining. Using Pan-STARRS1 data we determine the absolute magnitude of the AM CVn stars. There is some evidence that donor stars have a higher mass and radius than expected for white dwarfs or that the donors are not white dwarfs. Using the distances to the known AM CVn stars we find strong evidence that a large population of AM CVn stars have still to be discovered. As this value sets the background to the gravitational wave signal of LISA, this is of wide interest. We determine the mass transfer rate for 15 AM CVn stars and find that the majority have a rate significantly greater than expected from standard models. This is further evidence that the donor star has a greater size than expected.Comment: Accepted by A&A in main journa

    Investigation of the new cataclysmic variable 1RXS J180834.7+101041

    Full text link
    We present the results of our photometric and spectroscopic studies of the new eclipsing cataclysmic variable star 1RXS J180834.7+101041. Its spectrum exhibits double-peaked hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines show a nonuniform distribution of emission in the disk similar to that observed in IP Peg. This suggests that the object can be a cataclysmic variable with tidal density waves in the disk. We have determined the component masses (M_WD =0.8 \pm 0.22 M_sun and M_RD =0.14 \pm 0.02 M_sun) and the binary inclination (i =78 \pm 1.5 deg) based on well-known relations between parameters for cataclysmic variable stars. We have modeled the binary light curves and showed that the model of a disk with two spots is capable of explaining the main observed features of the light curves.Comment: 22 pages, 9 figures, 2 tables, published in Astronomy Letters, 2011, 37, 845-85
    corecore