277 research outputs found
Neonatal nasogastric tube feeding in a low-resource African setting - using ergonomics methods to explore quality and safety issues in task sharing.
BACKGROUND: Sharing tasks with lower cadre workers may help ease the burden of work on the constrained nursing workforce in low- and middle-income countries but the quality and safety issues associated with shifting tasks are rarely critically evaluated. This research explored this gap using a Human Factors and Ergonomics (HFE) method as a novel approach to address this gap and inform task sharing policies in neonatal care settings in Kenya. METHODS: We used Hierarchical Task Analysis (HTA) and the Systematic Human Error Reduction and Prediction Approach (SHERPA) to analyse and identify the nature and significance of potential errors of nasogastric tube (NGT) feeding in a neonatal setting and to gain a preliminary understanding of informal task sharing. RESULTS: A total of 47 end tasks were identified from the HTA. Sharing, supervision and risk levels of these tasks reported by subject matter experts (SMEs) varied broadly. More than half of the tasks (58.3%) were shared with mothers, of these, 31.7% (13/41) and 68.3% were assigned a medium and low level of risk by the majority (≥4) of SMEs respectively. Few tasks were reported as 'often missed' by the majority of SMEs. SHERPA analysis suggested omission was the commonest type of error, however, due to the low risk nature, omission would potentially result in minor consequences. Training and provision of checklists for NGT feeding were the key approaches for remedying most errors. By extension these strategies could support safer task shifting. CONCLUSION: Inclusion of mothers and casual workers in care provided to sick infants is reported by SMEs in the Kenyan neonatal settings. Ergonomics methods proved useful in working with Kenyan SMEs to identify possible errors and the training and supervision needs for safer task-sharing
Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package
Modern challenges arising in the fields of theoretical and experimental
physics require new powerful tools for high-precision electronic structure
modelling; one of the most perspective tools is the relativistic Fock space
coupled cluster method (FS-RCC). Here we present a new extensible
implementation of the FS-RCC method designed for modern parallel computers. The
underlying theoretical model, algorithms and data structures are discussed. The
performance and scaling features of the implementation are analyzed. The
software developed allows to achieve a completely new level of accuracy for
prediction of properties of atoms and molecules containing heavy and superheavy
nuclei
Search for New Physics in e mu X Data at D0 Using Sleuth: A Quasi-Model-Independent Search Strategy for New Physics
We present a quasi-model-independent search for the physics responsible for
electroweak symmetry breaking. We define final states to be studied, and
construct a rule that identifies a set of relevant variables for any particular
final state. A new algorithm ("Sleuth") searches for regions of excess in those
variables and quantifies the significance of any detected excess. After
demonstrating the sensitivity of the method, we apply it to the semi-inclusive
channel e mu X collected in 108 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV
at the D0 experiment during 1992-1996 at the Fermilab Tevatron. We find no
evidence of new high p_T physics in this sample.Comment: 23 pages, 12 figures. Submitted to Physical Review
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
The association between retinal vascular geometry changes and diabetic retinopathy and their role in prediction of progression: an exploratory study
Background: The study describes the relationship of retinal vascular geometry (RVG) to severity of diabetic retinopathy (DR), and its predictive role for subsequent development of proliferative diabetic retinopathy (PDR). Methods. The research project comprises of two stages. Firstly, a comparative study of diabetic patients with different grades of DR. (No DR: Minimal non-proliferative DR: Severe non-proliferative DR: PDR) (10:10: 12: 19). Analysed RVG features including vascular widths and branching angles were compared between patient cohorts. A preliminary statistical model for determination of the retinopathy grade of patients, using these features, is presented. Secondly, in a longitudinal predictive study, RVG features were analysed for diabetic patients with progressive DR over 7 years. RVG at baseline was examined to determine risk for subsequent PDR development. Results: In the comparative study, increased DR severity was associated with gradual vascular dilatation (p = 0.000), and widening of the bifurcating angle (p = 0.000) with increase in smaller-child-vessel branching angle (p = 0.027). Type 2 diabetes and increased diabetes duration were associated with increased vascular width (p = <0.05 In the predictive study, at baseline, reduced small-child vascular width (OR = 0.73 (95 CI 0.58-0.92)), was predictive of future progression to PDR. Conclusions: The study findings suggest that RVG alterations can act as novel markers indicative of progression of DR severity and establishment of PDR. RVG may also have a potential predictive role in determining the risk of future retinopathy progression. © 2014 Habib et al.; licensee BioMed Central Ltd
Search for Kaluza-Klein Graviton Emission in Collisions at TeV using the Missing Energy Signature
We report on a search for direct Kaluza-Klein graviton production in a data
sample of 84 of \ppb collisions at = 1.8 TeV, recorded
by the Collider Detector at Fermilab. We investigate the final state of large
missing transverse energy and one or two high energy jets. We compare the data
with the predictions from a -dimensional Kaluza-Klein scenario in which
gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for
=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71
TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron
We have measured the number of like-sign (LS) and opposite-sign (OS) lepton
pairs arising from double semileptonic decays of and -hadrons,
pair-produced at the Fermilab Tevatron collider. The data samples were
collected with the Collider Detector at Fermilab (CDF) during the 1992-1995
collider run by triggering on the existence of and candidates
in an event. The observed ratio of LS to OS dileptons leads to a measurement of
the average time-integrated mixing probability of all produced -flavored
hadrons which decay weakly, (stat.)
(syst.), that is significantly larger than the world average .Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.
Upstream ORF affects MYCN translation depending on exon 1b alternative splicing
<p>Abstract</p> <p>Background</p> <p>The <it>MYCN </it>gene is transcribed into two major mRNAs: one full-length (<it>MYCN) </it>and one exon 1b-spliced (<it>MYCN</it><sup>Δ1<it>b</it></sup>) mRNA. But nothing is known about their respective ability to translate the MYCN protein.</p> <p>Methods</p> <p>Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two <it>MYCN </it>transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two <it>MYCN </it>mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the <it>MYCN</it><sup>Δ1<it>b </it></sup>uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein.</p> <p>Results</p> <p>Both are translated, but higher levels of protein were seen with <it>MYCN</it><sup>Δ1<it>b </it></sup>mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from <it>MYCN </it>but not from <it>MYCN</it><sup>Δ1<it>b </it></sup>mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with <it>MYCN</it><sup>Δ1<it>b </it></sup>mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with <it>MYCN </it>mRNA. Here, we showed that MYCNOT: <it>MYCN </it>Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of <it>MYCN</it><sup>Δ1<it>b </it></sup>mRNA.</p> <p>Conclusions</p> <p>Existence of upstream ORF in <it>MYCN </it>transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction.</p
Gestational diabetes mellitus and retinal microvasculature.
BACKGROUND: Small-vessel dysfunction may be an important consequence of chronic hyperglycemia. We examined the association between gestational diabetes mellitus (GDM), a state of transient hyperglycemia during pregnancy, and retinal microvascular changes in pregnant women at 26-28 weeks of pregnancy. METHODS: A total of 1136 pregnant women with singleton pregnancies were recruited during their first trimester at two major Singapore maternity hospitals in an on-going birth cohort study. Participants underwent an oral glucose tolerance test and retinal imaging at 26-28 weeks gestation (n = 542). We used the 1999 World Health Organization (WHO) criteria to define GDM: ≥7.0 mmol/L for fasting glucose and/or ≥7.8 mmol/L for 2-h post-glucose. Retinal microvasculature was measured using computer software (Singapore I Vessel Analyzer, SIVA version 3.0, Singapore Eye Research Institute, Singapore) from the retinal photographs. RESULTS: In a multiple linear regression model adjusting for age, ethnicity and maternal education, mothers with GDM had narrower arteriolar caliber (-1.6 μm; 95% Confidence Interval [CI]: -3.1 μm, -0.2 μm), reduced arteriolar fractal dimension (-0.01 Df; 95% CI: -0.02 Df, -0.001 Df;), and larger arteriolar branching angle (1.8°; 95% CI: 0.3°, 3.3°) than mothers without GDM. After further adjusting for traditional risks of GDM, arteriolar branching angle remained significantly larger in mothers with GDM than those without GDM (2.0°; 95% CI: 0.5°, 3.6°). CONCLUSIONS: GDM was associated with a series of retinal arteriolar abnormalities, including narrower caliber, reduced fractal dimension and larger branching angle, suggesting that transient hyperglycemia during pregnancy may cause small-vessel dysfunction
Recommended from our members
Linking disease epidemiology and livestock productivity: the case of bovine respiratory disease in France
Concerns are growing over the impact of livestock farming on environment and public health. The livestock industry is faced with the double constraint of limiting its use of natural resources and antimicrobials while ensuring its economic sustainability. In this context, reliable methods are needed to evaluate the effect of the prevention of endemic animal diseases on the productivity of livestock production systems. In this study, an epidemiological and productivity model was used to link changes in Bovine Respiratory Disease (BRD) incidence with the productivity of the beef and dairy cattle sectors in France. Cattle production parameters significantly affected by BRD were selected through literature review. Previous field study results and national cattle performance estimates were used to infer growth performances, mortality rates and carcass quality in the cattle affected and not affected by BRD. A steady-state deterministic herd production model was used to predict the productivity of the dairy and beef sector and their defined compartments (breeding-fattening, feedlot young bulls, and feedlot veal) in case of BRD incidence reduction by 20%, 50% or 100%. Results suggested that BRD should be controlled at a priority in beef breeding farms as eradication of BRD in beef calves would increase the whole beef sector’s productivity by 4.7–5.5% while eradication in other production stages would result in lower productivity gain in their respective sectors. However, the analysis performed at compartment level showed that, in both the beef and dairy sector, young bull and veal feedlot enterprises derive more economic benefits from BRD eradication for their own compartment (increase in productivity of 8.7–12.8% for beef young bulls) than the breeding farms (increase in productivity of 5.1–6% for beef calves), which may limit the investments in BRD control
- …