109 research outputs found

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements

    Get PDF
    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z = 0.8. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark- energy equation of state parameterized by w0 and wa and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4 +- 0.5 and their total mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Cosmology with clusters of galaxies

    Get PDF
    In this Chapter I review the role that galaxy clusters play as tools to constrain cosmological parameters. I will concentrate mostly on the application of the mass function of galaxy clusters, while other methods, such as that based on the baryon fraction, are covered by other Chapters of the book. Since most of the cosmological applications of galaxy clusters rely on precise measurements of their masses, a substantial part of my Lectures concentrates on the different methods that have been applied so far to weight galaxy clusters. I provide in Section 2 a short introduction to the basics of cosmic structure formation. In Section 3 I describe the Press--Schechter (PS) formalism to derive the cosmological mass function, then discussing extensions of the PS approach and the most recent calibrations from N--body simulations. In Section 4 I review the methods to build samples of galaxy clusters at different wavelengths. Section 5 is devoted to the discussion of different methods to derive cluster masses. In Section 6 I describe the cosmological constraints, which have been obtained so far by tracing the cluster mass function with a variety of methods. Finally, I describe in Section 7 the future perspectives for cosmology with galaxy clusters and the challenges for clusters to keep playing an important role in the era of precision cosmology.Comment: 49 pages, 19 figures, Lectures for 2005 Guillermo Haro Summer School on Clusters, to appear in "Lecture notes in Physics" (Springer

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry

    Get PDF
    Although men of African ancestry have a high risk of prostate cancer (PCa), no genes or mutations have been identified that contribute to familial clustering of PCa in this population. We investigated whether the African ancestry–specific PCa risk variant at 8q24, rs72725854, is enriched in men with a PCa family history in 9052 cases, 143 cases from high-risk families, and 8595 controls of African ancestry. We found the risk allele to be significantly associated with earlier age at diagnosis, more aggressive disease, and enriched in men with a PCa family history (32% of high-risk familial cases carried the variant vs 23% of cases without a family history and 12% of controls). For cases with two or more first-degree relatives with PCa who had at least one family member diagnosed at age <60 yr, the odds ratios for TA heterozygotes and TT homozygotes were 3.92 (95% confidence interval [CI] = 2.13–7.22) and 33.41 (95% CI = 10.86–102.84), respectively. Among men with a PCa family history, the absolute risk by age 60 yr reached 21% (95% CI = 17–25%) for TA heterozygotes and 38% (95% CI = 13–65%) for TT homozygotes. We estimate that in men of African ancestry, rs72725854 accounts for 32% of the total familial risk explained by all known PCa risk variants. Patient summary: We found that rs72725854, an African ancestry–specific risk variant, is more common in men with a family history of prostate cancer and in those diagnosed with prostate cancer at younger ages. Men of African ancestry may benefit from the knowledge of their carrier status for this genetic risk variant to guide decisions about prostate cancer screening. © 2020 The AuthorsThe African ancestry–specific prostate cancer risk variant at 8q24, rs72725854, is enriched in men diagnosed at younger ages and men with a prostate cancer family history. Carriers of this risk allele would benefit from regular and earlier prostate cancer screening

    A meta-analysis of genome-wide association studies of multiple myeloma among men and women of African ancestry

    Get PDF
    Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2 GWASs ofMMin 1813 cases and 8871 controls and conducted an admixture mapping scan to identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P < 1 × 10-6; however, no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency, and 9 replicated at P < .05 in AA individuals. In 8 regions, we identified markers that better captureMMrisk in persons with AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95% confidence interval, 1.56-2.11) increased MM risk compared with those with average risk (25%-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P = 5.1 × 10-12). Our study shows that common genetic variation contributes to MM risk in individuals with AA
    corecore