6,085 research outputs found

    Telemedicine and Primary Care Obesity Management in Rural Areas– Innovative Approach for Older Adults?

    Get PDF
    Background: The growing prevalence of obesity is paralleling a rise in the older adult population creating an increased risk of functional impairment, nursing home placement and early mortality. The Centers for Medicare and Medicaid recognized the importance of treating obesity and instituted a benefit in primary care settings to encourage intensive behavioral therapy in beneficiaries by primary care clinicians. This benefit covers frequent, brief, clinic visits designed to address older adult obesity. Discussion: We describe the challenges in the implementation and delivery into real-world settings. The challenges in rural settings that have the fastest growing elderly population, high obesity rates, but also workforce shortages and lack of specialized services are emphasized. The use of Telemedicine has successfully been implemented in other specialties and could be a useful modality in delivering much needed intensive behavioral therapy, particularly in distant, under-resourced environments. This review outlines some of the challenges with the current benefit and proposed solutions in overcoming rural primary care barriers to implementation, including changes in staffing models. Conclusions: Recommendations to extend the benefit’s coverage to be more inclusive of non-physician team members is needed but also for improvement in reimbursement for telemedicine services for older adults with obesity

    Beyond Nanopore Sequencing in Space: Identifying the Unknown

    Get PDF
    Astronaut Kate Rubins sequenced DNA on the International Space Station (ISS) for the first time in August 2016 (Figure 1A). A 2D sequencing library containing an equal mixture of lambda bacteriophage, Escherichia coli, and Mus musculus was prepared on the ground with a SQK_MAP006 kit and sent to the ISS frozen and loaded into R7.3 flow cells. After a total of 9 on-orbit sequencing runs over 6 months, it was determined that there was no decrease in sequencing performance on-orbit compared to ground controls (1). A total of ~280,000 and ~130,000 reads generated on-orbit and on the ground, respectively, identified 90% of reads that were attributed to 30% lambda bacteriophage, 30% Escherichia coli, and 30% M. musculus (Figure 1B). Extensive bioinformatics analysis determined comparable 2D and 1D read accuracies between flight and ground runs (Figure 1C), and data collected from the ISS were able to construct directed assemblies of E.coli and lambda genomes at 100% and M. musculus mitochondrial genome at 96.7%. These findings validate sequencing as a viable option for potential on-orbit applications such as environmental microbial monitoring and disease diagnosis. Current microbial monitoring of the ISS applies culture-based techniques that provide colony forming unit (CFU) data for air, water, and surface samples. The identity of the cultured microorganisms in unknown until sample return and ground-based analysis, a process that can take up to 60 days. For sequencing to benefit ISS applications, spaceflight-compatible sample preparation techniques are required. Subsequent to the testing of the MinION on-orbit, a sample-to-sequence method was developed using miniPCR and basic pipetting, which was only recently proven to be effective in microgravity. The work presented here details the in- flight sample preparation process and the first application of DNA sequencing on the ISS to identify unknown ISS-derived microorganisms

    How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough?

    Get PDF
    Background Heart rate (HR) monitors are valuable devices for fitness-orientated individuals. There has been a vast influx of optical sensing blood flow monitors claiming to provide accurate HR during physical activities. These monitors are worn on the arm and wrist to detect HR with photoplethysmography (PPG) techniques. Little is known about the validity of these wearable activity trackers. Aim Validate the Scosche Rhythm (SR), Mio Alpha (MA), Fitbit Charge HR (FH), Basis Peak (BP), Microsoft Band (MB), and TomTom Runner Cardio (TT) wireless HR monitors. Methods 50 volunteers (males: n=32, age 19–43 years; females: n=18, age 19–38 years) participated. All monitors were worn simultaneously in a randomised configuration. The Polar RS400 HR chest strap was the criterion measure. A treadmill protocol of one 30 min bout of continuous walking and running at 3.2, 4.8, 6.4, 8.0, and 9.6 km/h (5 min at each protocol speed) with HR manually recorded every minute was completed. Results For group comparisons, the mean absolute percentage error values were: 3.3%, 3.6%, 4.0%, 4.6%, 4.8% and 6.2% for TT, BP, RH, MA, MB and FH, respectively. Pearson product-moment correlation coefficient (r) was observed: r=0.959 (TT), r=0.956 (MB), r=0.954 (BP), r=0.933 (FH), r=0.930 (RH) and r=0.929 (MA). Results from 95% equivalency testing showed monitors were found to be equivalent to those of the criterion HR (±10% equivalence zone: 98.15–119.96). Conclusions The results demonstrate that the wearable activity trackers provide an accurate measurement of HR during walking and running activities

    Functional responses of methanogenic archaea to syntrophic growth.

    Get PDF
    Methanococcus maripaludis grown syntrophically with Desulfovibrio vulgaris was compared with M. maripaludis monocultures grown under hydrogen limitation using transcriptional, proteomic and metabolite analyses. These measurements indicate a decrease in transcript abundance for energy-consuming biosynthetic functions in syntrophically grown M. maripaludis, with an increase in transcript abundance for genes involved in the energy-generating central pathway for methanogenesis. Compared with growth in monoculture under hydrogen limitation, the response of paralogous genes, such as those coding for hydrogenases, often diverged, with transcripts of one variant increasing in relative abundance, whereas the other was little changed or significantly decreased in abundance. A common theme was an apparent increase in transcripts for functions using H(2) directly as reductant, versus those using the reduced deazaflavin (coenzyme F(420)). The greater importance of direct reduction by H(2) was supported by improved syntrophic growth of a deletion mutant in an F(420)-dependent dehydrogenase of M. maripaludis. These data suggest that paralogous genes enable the methanogen to adapt to changing substrate availability, sustaining it under environmental conditions that are often near the thermodynamic threshold for growth. Additionally, the discovery of interspecies alanine transfer adds another metabolic dimension to this environmentally relevant mutualism

    Nutritional depletion of total mixed rations by red-winged blackbirds and projected impacts on dairy cow performance

    Get PDF
    This Research Communication describes an investigation of the nutritional depletion of total mixed rations (TMR) by pest birds. We hypothesized that species-specific bird depredation of TMR can alter the nutritional composition of the ration and that these changes can negatively impact the performance of dairy cows. Blackbirds selected the high energy fraction of the TMR (i.e., flaked corn) and reduced starch, crude fat and total digestible nutrients during controlled feeding experiments. For Holsteins producing 37·1 kg of milk/d, dairy production modeling illustrated that total required net energy intake (NEI) was 35·8 Mcal/d. For the reference TMR unexposed to blackbirds and the blackbird-consumed TMR, NEI supplied was 41·2 and 37·8 Mcal/d, and the resulting energy balance was 5·4 and 2·0 Mcal/d, respectively. Thus, Holsteins fed the reference and blackbird-consumed TMR were estimated to gain one body condition score in 96 and 254 d, and experience daily weight change due to reserves of 1·1 and 0·4 kg/d, respectively. We discuss these results in context of an integrated pest management program for mitigating the depredation caused by pest birds at commercial dairies

    Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences

    Get PDF
    A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf

    Genome-Wide Association Study and Gene Expression Analysis Identifies CD84 as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis

    Get PDF
    Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in 2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept (n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated with change in disease activity score (ΔDAS) in the etanercept subset of patients (P = 8×10-8), but not in the infliximab or adalimumab subsets (P>0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 3′ UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1×10-11 in 228 non-RA patients and P = 0.004 in 132 RA patients). Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210) and showed a non-significant trend for better ΔDAS in a subset of RA patients with gene expression data (n = 31, etanercept-treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8). Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84 genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of European ancestry. © 2013 Cui et al
    • …
    corecore