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Abstract

Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is
unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical
biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-
TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in
2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept
(n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated
with change in disease activity score (DDAS) in the etanercept subset of patients (P = 861028), but not in the infliximab or
adalimumab subsets (P.0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 39 UTR of an
immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene
expression in peripheral blood mononuclear cells (P = 1610211 in 228 non-RA patients and P = 0.004 in 132 RA patients).
Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210)
and showed a non-significant trend for better DDAS in a subset of RA patients with gene expression data (n = 31, etanercept-
treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA
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Abstract
patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8).
Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene
expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84
genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of
European ancestry.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease charac-

terized by chronic inflammation of the synovial lining of the joint

[1]. If left untreated, outcome varies from self-limited disease in a

small proportion of RA patients to severe disease resulting in

profound structural damage, excess morbidity and disability, and

early mortality [2]. In the last twenty years, disease activity has

been controlled in many patients by treatment with disease-

modifying anti-rheumatic drugs (DMARDs), such as methotrex-

ate, and the more recently developed biologic DMARDs that

block inflammatory cytokines such as tumor necrosis factor-alpha

(TNFa) [3]. Unfortunately, these medications are not effective in

all RA patients, with up to one-third of patients failing to respond

to any single DMARD [1–3]. Moreover, the biological mecha-

nisms underlying treatment failure are unknown, which limits the

development of clinical biomarkers to guide DMARD therapy or

the development of new drugs to target refractory cases.

There are two classes of anti-TNF therapy: the TNF receptor

fusion protein (etanercept), which acts as a soluble receptor to bind

circulating cytokine and prevent TNF from binding to its cell

surface receptor, and monoclonal antibodies that bind TNF

(adalimumab, infliximab, certolizumab, and golimumab). There

are undoubtedly shared mechanisms between the two drug classes

(e.g., downstream signaling factors), as illustrated by similar effects

on the change in inflammatory cytokines, complement activation,

lymphocyte trafficking, and apoptosis [4,5,6]. Similarly, there are

likely to be different biological factors that influence response:

infliximab and adalimumab are approved for treatment of Crohn’s

disease; infliximab and adalimumab bind to transmembrane TNF

on the surface of activated immune cells, whereas etanercept only

binds soluble TNF [7]; and etanercept also binds a related

molecule, lymphotoxin alpha (LTA), whereas infliximab/adali-

mumab do not [8].

Pharmacogenetics of response to anti-TNF therapy in RA

remains in its early stages, with no single variant reaching an

unambiguous level of statistical significance. Candidate gene

studies suggest associations of TNFa or TNF receptor alleles,

RA risk alleles or other SNPs with response to anti-TNF therapy

[9,10,11]. Two GWAS in small sample sets (largest was 566

patients) have been performed, which identified loci with

suggestive evidence for association [12,13]. Therefore, GWAS of

large sample sizes may yet uncover genetic factors associated with

response to anti-TNF therapy in RA, and larger cohorts enable

separate analyses of the different types of anti-TNF drugs.

Here we report a GWAS of 2,706 samples with anti-TNF

treatment response data collected from an international collabo-

ration, including previously published GWAS data [12,13]. Our

primary outcome measure was the change in disease activity score

based on a joint count in 28 joints (DAS28) from baseline to 3–12

months after initiating anti-TNF therapy. Our secondary outcome

measure was European League Against Rheumatism (EULAR)

responder status [14,15], where patients are classified as EULAR

good responders, moderate responders or non-responders based

on follow up DAS28 after treatment and overall change in DAS28.

We found a highly significant association for a variant that we also

show is also a strong expression quantitative trait locus (eQTL) for

the CD84 gene. Our findings suggest that CD84 genotype and/or

expression may prove to be a biomarker for etanercept response in

RA patients.

Results

Genome-wide association study
Clinical and GWAS data were compiled for 2,706 individuals of

European ancestry from 13 collections as part of an international

collaboration. Table 1 shows sample sizes, phenotypes and clinical

variables for the four collections that were the units of analysis

(additional details are shown in Table S1). Disease activity score

based on a 28-joint count (DAS28) were collected at baseline and

at one time point after anti-TNF therapy administration (mean 3.7

months, range 3–12 months). We defined our primary phenotype

GWAS on Response to Anti-TNF Therapy in RA
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as a change in DAS28 (DDAS) from baseline (so that greater

DDAS corresponded with better response to therapy; overall mean

and standard deviation of 2.161.3), adjusted for baseline DAS. A

secondary phenotype was used based on European League Against

Rheumatism (EULAR) response criteria. EULAR ‘good response’

was defined as ending DAS,3.2 and DDAS.1.2; ‘non-response’

was defined as DDAS ,0.6 or DDAS#1.2, and ending DAS

.5.1; and ‘moderate response’ is in between [15]. We limited our

secondary analysis to a dichotomous outcome, EULAR good

responders (n = 998 for all patients treated with anti-TNF therapy)

versus EULAR non-responders (n = 655), excluding the moderate

category based on the hypothesis that a more extreme phenotype

of response would yield improved discrimination.

Clinical variables were examined for association with pheno-

type, and therefore possible confounding in genetic association

tests. In multivariate models (Table S2), only baseline DAS was

strongly associated with the DDAS phenotype. As previously

shown [11], age and gender showed univariate associations that

were attenuated in the multivariate analysis. Accordingly, we used

only baseline DAS as a clinical covariate, as this allowed us to

maximize sample size given clinical variable missing data in some

cohorts.

We performed quality control (QC) filtering and data processing

of GWAS data for each of eleven genotyping batches. Genotyping

array platforms are described in the Methods. HapMap2

imputation allowed us to test for association at .2 M SNPs with

imputation quality scores .0.5. Genotype data were merged

across several genotype batches to create four collections for

genome-wide association testing. We performed linear regression

association tests using baseline DAS and three principal compo-

nents as covariates, and performed inverse-variance weighted

meta-analysis to combine results across the four collections.

Quantile-quantile plots with genomic control lGC values are

shown in Figure S1. We found no evidence of systematic inflation

of association test results, and no evidence of deflation for imputed

versus genotyped SNPs. As a final filter, we excluded SNPs that

Author Summary

There are no genetic predictors of response to one of the
most widely used classes of drugs in the treatment of
rheumatoid arthritis—biological modifiers of the inflam-
matory cytokine tumor necrosis factor-alpha (or anti-TNF
therapy). To identify genetic predictors, we performed the
largest genome-wide association study (GWAS) to date as
part of an international collaboration. In our study, which
included 2,706 RA patients treated with one of three anti-
TNF drugs, the most significant finding was restricted to
RA patients treated with etanercept (P = 861028), a drug
that acts as a soluble receptor to bind circulating cytokine
and prevents TNF from binding to its cell surface receptor.
The associated variant influences expression of a nearby
immune-related gene, CD84, whose expression is correlat-
ed with disease activity in RA patients. Together, our data
support a model in which genomic factors related to CD84
expression serve as a predictor of disease activity and
response to etanercept therapy among RA patients of
European ancestry, but not anti-TNF therapies that act
through different biological mechanisms or potentially in
RA patients of other genetic ancestries.

Table 1. Samples and clinical data.

Collection (analysis batch): REF BRAGGSS DREAM ReAct Total

Sample sizes 959* 595 880* 272 2706

Drug subsets

etanercept 365 259 109 0 733

infliximab 415 268 211 0 894

adalimumab 174 68 557 272 1071

EULAR Reponse categories

Good responder 432** 161 313 92 998

Moderate responder 243 258 359 131 991

Non-responder 322 176 208 49 755

Genotype platform mixed Affy 500K Illu550K +650K Illumina OmniExpress

Clinical variables

Age, yr; mean (SD) 53.6 (12.7) 57.4 (10.9) 54.8 (12.9) 53.9 (10.8)

Disease duration, yr; mean (SD) 6.7 (9.4) 14 (9.8) 9.6 (9.5) 12 (9.1)

Gender, female % 75.6 77.3 68.3 77.9

Seropositive, % 87 78 80 70

MTX co-therapy, % 65.6 85.6 76.0 50.0

Baseline DAS, mean (SD) 5.5 (1.2) 6.7 (0.9) 5.5 (1.2) 5.9 (1.0)

DDAS, mean (SD) 1.9 (1.6) 2.5 (1.5) 1.9 (1.3) 2.2 (1.3)

Mean treatment duration 4.6 5.6 3 3

Study design All*** Observational Observational Observational

*8 patients had no TNF drug information.
**38 patients had only EULAR response (good, moderate or none) clinical data.
***ABCoN, GENRA are prospective cohorts, BeSt, eRA and TEAR are randomized controlled trial (RCT), and rest of REF group are observational cohorts.
doi:10.1371/journal.pgen.1003394.t001

GWAS on Response to Anti-TNF Therapy in RA
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showed strong evidence of heterogeneity across collections

(Cochran’s Q P,0.001).

We first analyzed all samples together (n = 2,706), regardless of

drug type. We found no clear evidence of association with treatment

response measured by DDAS (Figure 1A). Similar results were

obtained using the binary phenotype of EULAR responder versus

EULAR non-responder status (Figures S1 and S2).

We next separately analyzed patients treated with either

etanercept (n = 733), infliximab (n = 894) or adalimumab

(n = 1,071) (Figure 1B–1D), under the hypothesis that different

genetic loci affect response to the different drugs based on their

mechanism of action or other biochemical properties. GWAS

results are publicly available for all SNPs tested at the Plenge

laboratory and RICOPILI Web sites (see URLs). GWAS results

for all SNPs achieving P,1026 from any analysis are detailed in

the Table S3.

For etanercept-treated RA patients, a locus on chromosome

1q23 achieved near-genome-wide significance (rs6427528,

PMETA = 861028) (Figure 1B, Figure 2A, and Figure 3), but not

in the infliximab or adalimumab subsets (P.0.05) (Figure S3).

SNPs in linkage disequilibrium (LD) showed consistent association

results (rs1503860, P = 161027, r2 = 1 with rs6427528 in Hap-

Map; three perfect-LD clusters of SNPs exemplified by rs3737792,

rs10908787 and rs11265432 respectively; P,561026; r2 = 0.83,

0.63 and 0.59 with rs6427528, respectively). No single collection

was responsible for the signal of association, as the effect size was

consistent across all collections (Figure S4). The top SNP

rs6427528 was genotyped in the ReAct dataset (Illumina Omni

Express genotyping chip), and was well imputed across all other

datasets (imputation quality score INFO $0.94, which is an

estimate of genotype accuracy; the range of INFO scores is 0–1,

where 1 indicates high confidence). All of these SNPs had minor

Figure 1. GWAS results for the DDAS phenotype. Shown are strengths of association (2Log10 P-value) for each SNP versus position along
chromosomes 1 to 22. A) All samples (n = 2,706). B) Etanercept-treated patients (n = 733). C) Infliximab-treated patients (n = 894). D) Adalimumab-
treated patients (n = 1,071).
doi:10.1371/journal.pgen.1003394.g001
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allele frequencies ranging from 7–10%. The SNP explains 2.6%

variance in response to etanercept treatment.

For patients treated with infliximab, we observed a suggestive

result on chromosome 10p14 (rs12570744, P = 261027). No highly

significant or suggestive results were observed for the DDAS

phenotype in patients treated with adalimumab (PMETA.1025).

Qualitatively similar results were attained in the analysis of our

secondary phenotype, EULAR good responder vs non-responder

status (Figures S1 and S2). For SNPs at the 1q23 locus, the pattern

of association with responder/non-responder status (etanercept-

treated patients) was consistent with the results for DDAS

(P = 661023 for rs6427528 and rs1503860). We also identified

potential novel associations, with suggestive results for infliximab

(rs4336372, chromosome 5q35, P = 861027) and adalimumab

(rs940928, chromosome 2q12, P = 261026).

eQTL and sequence analysis of the CD84 gene
For each SNP with P,1026 identified by our GWAS (n = 6

independent SNPs), we searched for biological evidence to support

a true positive association. We used genome-wide sequence data

from the 1000 Genomes Project to search for putative functional

variants in LD with the index SNP (defined as SNPs predicted to

change protein-sequence or mRNA splicing). We also used

genome-wide expression data to search for an expression

quantitative trait locus (eQTL) in public databases and in

peripheral blood mononuclear cells (PBMCs) in 228 non-RA

patients and in 132 RA patients.

While we did not identify any variants disrupting protein-coding

sequences or mRNA splicing, we did find that the 1q23 SNP

associated with response to etanercept therapy was a strong eQTL

in PBMCs (Figure 2A and Figure 3). In an analysis of 679 SNPs for

cis-regulated expression of five genes in the region of LD

(SLAMF6, CD84, SLAMF1, CD48, and SLAMF7), we found that

rs6427528-CD84 (and SNPs in LD with it) was the top eQTL of all

results (n = 228 subjects; Figure 2A). This SNP was specifically

associated with CD84 expression, and was not an eQTL for other

genes in the region (P.0.36 for the other genes).

We replicated our eQTL finding in 132 RA patients with both

GWAS data and genome-wide expression data. PBMC expression

data were available from RA patients in the Brigham RA

Sequential Study (BRASS) and Autoimmune Biomarkers Collab-

orative Network (ABCoN) collections. We observed a significant

association between rs6427528 genotype and CD84 expression

(linear regression adjusted for cohort P = 0.004, rank correlation

P = 0.018). The direction of effect was the same as in the PBMC

samples from 228 non-RA patients. A combined analysis of RA

patients and the non-RA patient eQTL data (described above)

yielded rank correlation P = 3610210 (n = 360 total individuals).

We searched sequence data to determine if rs6427528, or any of

the SNPs in LD with it, were located within conserved, non-coding

motifs that might explain the eQTL data. We used HaploReg [16]

to examine the chromatin context of rs6427528 and 26 SNPs in

LD with it (at r2.0.50). We found that 5 SNPs occur in strong

enhancers inferred from chromatin marks (Figure 2B) [17]. Two of

these 5 SNPs, rs10797077 and rs6427528 (r2 = 0.74 to each other),

are predicted to disrupt transcription factor binding sites, and

rs10797077 occurs at a site that shows conservation across

mammalian genomes [18]. Figure 2C shows the DNA sequence

position weight matrices of the transcription factor binding sites

changed by rs10797077 (the minor allele creates a stronger

binding site for the AIRE transcription factor) and rs6427528 (the

minor allele creates a binding site for KROX and SREBP).

Expression of CD84 as a biomarker of disease activity and
treatment response

Because the genetic data demonstrates that the allele associated

with better response is associated with higher CD84 expression,

this suggests that CD84 expression itself may serve as a useful

biomarker of disease activity or treatment response. We tested

both hypotheses using PBMC expression data from the BRASS

and ABCoN collections. First, we tested if CD84 expression is

associated with cross-sectional DAS, adjusting for age, gender and

cohort (Figure 4). We observed a significant inverse association

between CD84 expression and cross-sectional DAS in 210 RA

patients (beta = 20.3, P = 0.02, r2 = 0.02). That is, higher CD84

expression was associated with lower DAS, regardless of treatment.

Second, we tested CD84 for association with our primary

treatment response phenotype, DDAS. The sample size for this

analysis was smaller than for the cross-sectional analysis, as we

required that patients be on anti-TNF therapy and have pre- and

post-treatment DAS. We found that CD84 expression levels

showed a non-significant trend towards an association with DDAS

in 31 etanercept-treated patients (beta = 0.2, r2 = 0.002, P = 0.46)

and in all 78 anti-TNF-treated patients (beta = 0.14, r2 = 0.004,

P = 0.4). The effect is in the same direction one would predict

based on the genetic association at rs6427528: the allele associated

with better response is also associated with higher CD84 expression

(Figure 3), and in 31 RA patients, higher CD84 expression

(regardless of genotype) is associated with a larger DDAS (i.e.,

better response; Figure 4).

Replication of genetic data in a small, multi-ethnic cohort
Since most of the samples available to us as part of our

international collaboration were included in our GWAS, few

additional samples were available for replication. In addition, the

remaining samples available to us were from different ethnic

backgrounds. Nonetheless, we sought to replicate the associations

of rs6427528 with DDAS in these additional samples. We

genotyped 139 etanercept-treated patients from a rheumatoid

arthritis registry in Portugal (Reuma.pt) and 151 etanercept-

treated patients from two Japanese collections (IORRA, n = 88

patients on etanercept and Kyoto University, n = 63 on etaner-

cept). Replication sample sizes, clinical data and results for these

Figure 2. Association results and SNP annotations in the 1q23 CD84 locus. A) Regional association plots with DDAS (top panel) and with
CD84 expression (bottom panel), showing strengths of association (2Log10 P-value) versus position (Kb) along chromosome 1. B) Schematic of CD84
gene structure (RefSeq gene model, box exons connected by diagonal lines, arrow indicates direction of transcription) with strong enhancer
chromatin states (orange rectangles) and SNPs in high LD (r2.0.8) with rs6427528 (vertical ticks). SNPs in enhancers are labeled below. C)
Annotations of strong-enhancer rs6427528 proxy SNPs; listed are SNP rs-ID (major and minor alleles), conservation score, cell line with DNAse
footprint if present, and transcription factor binding sites altered. 1- Genomic evolutionary rate profiling (GERP) conservation score, where a score .2
indicates conservation across mammals. 2- DNase footprint data are compiled from publicly available experiments by HaploReg. 3- Position weight
matrix logos show transcription factor consensus binding sites with nucleotide bases proportional to binding importance. SNP position is boxed.
Note that the rs10797077 AIRE_2 and the rs6427528 SREBP_4 motifs are on the minus strand (base complements correspond to SNP alleles), with the
SREBP motif shown upside down to align with the rs6427528 KROX motif on the positive strand. Data are from HaploReg.
doi:10.1371/journal.pgen.1003394.g002
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two SNPs are shown in Table S4. Based on the observed effect size

in the GWAS and observed allele frequency in the replication

samples, we had 32% power to replicate this finding in the

Portuguese samples and 17% power to replicate this finding in the

Asian samples at P,0.05. The same association analysis as for

GWAS was carried out: linear regression assuming an additive

genetic model and using DDAS as phenotype, adjusted for

baseline DAS. Replication results are shown in Figure 5.

While the SNPs fail to replicate in these patient collections at

P,0.05, the direction of effect is the same in the Portuguese and

Kyoto replication samples as in our GWAS. In a combined

analysis limited to subjects of European-ancestry (GWAS data and

Portuguese replication samples), rs6427528 remained highly

suggestive (P = 261026). Including the Japanese subjects, the

overall GWAS+replication combined meta-analysis P-value re-

mained suggestive (P = 561024).

Discussion

Here we present the largest GWAS to date on anti-TNF

therapy response in 2,706 RA patients. We find a significant

association at the 1q23/CD84 locus in 733 etanercept treated

patients (P = 861028), but not in RA patients treated with drugs

that act as a monoclonal antibody to neutralize TNF (infliximab or

Figure 3. 1q23/CD84 genotype association plots for DDAS and
CD84 gene expression. Shown are DDAS in our GWAS in etanercept-
treated patients (top panel, n = 733; n = 634 with the GG genotype and
n = 99 with the GA or AA genotype) and CD84 expression in our eQTL
results (bottom panel, n = 228 non-RA patients; n = 178 with the GG
genotype and n = 50 with the GA or AA genotype). The rare-allele
homozygous genotype AA was observed four times in our DDAS GWAS
and was pooled with the heterozygous GA genotype for this figure; AA
homozygotes were not observed in the CD84 eQTL data. Association
analyses reported in the text regressed phenotype (DDAS, P = 861028;
CD84 expression, P = 1610211) on minor-allele dosage (range 0–2).
doi:10.1371/journal.pgen.1003394.g003

Figure 4. CD84 expression level and clinical features. Analyses
are shown in RA patients from the BRASS and ABCoN registries, for
baseline DAS (top panel, n = 210; R2 = 0.02, p = 0.02) and DDAS (bottom
panel, n = 31; R2 = 0.001, p = 0.46). Best-fit linear regression lines are
shown in black, with shaded regions showing linear regression model
(slope and intercept) 95% confidence intervals. CD84 expression levels
were quantile normalized, and DDAS values were adjusted for age,
gender and baseline DAS.
doi:10.1371/journal.pgen.1003394.g004
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adalimumab). The allele associated with a larger DDAS (i.e., better

response) was associated with higher CD84 expression in PBMCs

from non-RA patients (P = 1610211) and in RA patients

(P = 0.004).

We first conducted a GWAS of both categories of anti-TNF

drugs (the soluble receptor drug, etanercept, and two monoclonal

antibody drugs, infliximab and adalimumab). However, this

analysis revealed no strongly associated SNPs. When we subset

our GWAS by each of the three individual drugs, several SNPs in

the 1q23 locus were highly significant in etanercept-treated

patients, and SNPs in three other loci (10p15, 5q35 and 2q12)

were associated in infliximab or adalimumab subset analyses.

Furthermore, the top SNPs for each analysis (Table S3) showed

little correlation across the three anti-TNF drugs. This simple

observation suggests that genetic control of treatment response

may be different for different drugs. This finding is consistent with

the clinical observation that RA patients who fail one anti-TNF

drug may still respond to a different anti-TNF drug, albeit at lower

rates of response [19]. If confirmed in larger samples and more

comprehensive analyses, then this could have major implications

for how physicians prescribe these drugs.

The most significant finding from our GWAS was a set of equivalent

SNPs in LD with each other from the 1q23 locus in etanercept-treated

RA patients (Figure 1 and Figure 2A). While the top SNP did not reach

genome-wide significance in predicting treatment response, it did reach

genome-wide significance as an eQTL in PBMCs (P = 1610211;

Figure 2A). This finding indicates that the SNP (or another variant in

LD with it) is indeed biologically functional in a human tissue that is

important in the immune response. Two SNPs, rs10797077 and

rs6427528, disrupt transcription factor binding sites, and represent

excellent candidates for the causative allele to explain the effect on

CD84 expression (Figure 2C).

Our findings suggest that CD84 genotype and/or expression

could be a biomarker for etanercept treatment response among

individuals of European ancestry. The genetic and expression data

predict that CD84 expression should be positively associated with

treatment response (i.e., higher expression is associated with better

response; Figure 3). While we did not observe a significant

association between CD84 levels and DDAS, we did observe a

trend consistent with this prediction (Figure 4). Importantly, we

note that power was extremely limited with the small sample sizes

for which we had CD84 expression as well as drug response data

(n = 31 RA patients treated with etanercept).

The CD84 gene is a compelling candidate for immune response,

belonging to the CD2 subset of the immunoglobulin superfamily.

It has been implicated in T-cell activation and maturation [20].

CD84 localizes to the surface of CD4+ and CD8+ T cells, and acts

as a costimulatory molecule for IFN-gamma secretion [21]. CD84

is also expressed in B-cells, monocytes and platelets. CD84 has not

been previously implicated in genetic studies of RA risk, disease

activity, disease severity, or treatment response.

A limitation of our study is the small sample size available for

replication (n = 290 etanercept-treated patients), and the lack of

replication observed for the top CD84 SNP (rs6427528) among

patients of Portuguese and Japanese ancestry. The simplest

explanation is that our original observation in the GWAS data

represents a false positive association. However, the eQTL and

gene expression data argue against this possibility. Explanations

for a false negative finding in our replication collections include: (1)

lack of power, especially if the effect size observed in the GWAS

represents an over-estimate of the true effect size (the Winner’s

Curse) – we estimate that we had 32% and 17% power (at

P = 0.05) to detect an association in the Portuguese and Japanese

sample collections, respectively; (2) clinical heterogeneity, which is

Figure 5. Replication and overall results for the CD84 SNP rs6427528. Forest plot shows each cohort, sample size and linear regression beta
coefficient estimates with symbol size proportional to cohort sample size and thin horizontal lines showing beta 95% CIs. Inverse variance weighted
meta-analysis results are shown in bold for GWAS, GWAS+European (Portuguese) replication samples, and for GWAS+European+Asian (Japanese)
replication samples, with diamond widths indicating beta 95% CIs.
doi:10.1371/journal.pgen.1003394.g005
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always a possibility in pharmacogenetic studies, especially those

conducted in different countries; and (3) ethnic differences,

including different patterns of LD between the underlying

causative allele (which is as yet unknown) and marker SNPs

tested in our study. We did observe subtle differences in local

patterns of LD between Asians and Europeans using genetic data

from the 1000 Genomes Project (Figure S5). We note that the

rs6427528 minor allele A has a frequency of ,5–10% in

European and East Asian populations, and ,50% in the African

YRI population (HapMap2 and 1000 Genomes); therefore, it may

be of interest to test African American samples in replication.

What are the options for increasing sample size in pharmaco-

genetic studies, thereby providing an opportunity to replicate our

CD84 genetic and expression findings? While it might seem trivial

to collect more samples through traditional registries, this is

extremely challenging for phenotypes pertaining to treatment

efficacy. To underscore this point, we highlight our study design,

where we organized samples and clinical data from 16 different

collections across 7 different countries in order to obtain the

samples for the current study. Going forward, non-traditional

strategies to collect biospecimens linked with clinical data (e.g.,

online registries, electronic medical records) may be required to

achieve clinical collections of sufficient size to discover pharma-

cogenomic predictors of efficacy.

In conclusion, we conducted the largest GWAS to date for

response to anti-TNF therapy in RA patients. Our genetic and

expression data suggest that CD84 genetic variants and/or

expression levels could be developed as predictive biomarkers for

etanercept treatment response in RA patients of European

ancestry.

Methods

Samples and clinical data
All patients met 1987 ACR criteria for RA, or were diagnosed

by a board-certified rheumatologist. In addition, patients were

required to have at least moderate disease activity at baseline

(DAS.3.2). All patients gave their informed consent and all

institutional review boards approved of this study. A total of 13

collections from across 5 countries were included in GWAS

[11,12,13,22]: Autoimmune Biomarkers Collaborative Network

(ABCoN) from the U.S. (N = 79); the Genetics Network Rheu-

matology Amsterdam (GENRA, N = 53); the Dutch Behandel-

strategieen voor Rheumatoide Arthritis (BeSt, N = 85); the U.K.

Biological in Rheumatoid arthritis Genetics and Genomics Study

Syndicate (BRAGGSS, N = 140); the U.S. Brigham Rheumatoid

Arthritis Sequential Study (BRASS, N = 55); the Swedish Epide-

miological Investigation of Rheumatoid Arthritis (EIRA, N = 298);

the Immunex Early Rheumatoid Arthritis study (eRA N = 57); the

Swedish Karolinska Institutet study (KI, N = 77); the Netherlands

collection from Leiden University Medical Center (LUMC,

N = 43); and the U.S. Treatment of Early Aggressive RA (TEAR,

N = 109). We refer to these collections as the American College of

Rheumatology Research and Education Foundation (REF)

collection, as funding for GWAS genotyping was provided by

the ‘‘Within Our Reach’’ project. We included additional samples

from BRAGGSS (N = 595) [12]; the Dutch Rheumatoid Arthritis

Monitoring registry (DREAM) in the Netherlands, and the

ApotheekZorg (AZ) database (which facilitates the Dutch distri-

bution of adalimumab; N = 880) [23,24], together referred to as

DREAM; and the French Research in Active Rheumatoid

Arthritis (ReAct, N = 272) [25].

Additional samples were collected for replication of SNPs in the

1q23 locus. These included the Rheumatic Diseases Portuguese

Register (Reuma.pt, N = 378) from the Portuguese Society of

Rheumatology (SPR), which captures more than 90% of patients

treated with biological therapies and managed in rheumatology

departments across Portugal [26]. Additional replication samples

(N = 374) of East Asian ancestry were included from the IORRA

and Kyoto University Hospital registries, part of the Japanese

Genetics and Allied research in Rheumatic diseases Networking

consortium (GARNET) [27].

Clinical data were collected in each cohort, including disease

activity scores at baseline and at least one time point after

treatment, gender, age, methotrexate use, as well as autoantibody

status (RF or CCP). The composite disease activity scores for 28

joints (DAS28) included laboratory values for erythrocyte

sedimentation rate (ESR) for most samples and C-reactive protein

(CRP) for 191 samples in the REF collection (ABCoN, BRASS

and eRA cohorts). DAS28 values were available at baseline and at

3–12 months after initiating anti-TNF therapy. Our primary

phenotype was defined as DDAS = baseline DAS - end DAS, and

responder status was also determined according to EULAR

criteria for start and end DAS [15]. Clinical variables were

assessed for association with phenotype in multivariate linear or

logistic regression models for both the DDAS and EULAR

responder-status phenotypes. Clinical variables that were signifi-

cant in these analyses were retained as covariates in genetic

association tests, except for methotrexate co-therapy. Including a

covariate for methotrexate co-therapy reduced sample size

substantially due to missing clinical data, so results were compared

for our primary analysis and a secondary analysis with the

covariates (and with reduced sample size) and the results were

verified not to be impacted (not shown).

Genotyping and data processing
A total of eleven genotyping batches were processed separately.

(1) BRASS samples were genotyped using Affymetrix 6.0 chip

[28]; (2) WTCCC samples were genotyped on Affymetrix 500K

chip [12]. All other cohorts were genotyped using Illumina

platform arrays (see Table 1). Our American College of

Rheumatology Research Education Fund (REF) collection was

made up of smaller cohorts from throughout North America and

Europe, including BRASS samples. Also included in REF: (3)

ABCoN [13] and (4) EIRA [29] were separately genotyped on the

Illumina 317K genotyping array; (5) eRA on the Illumina 550K

chip; and (6) GENRA, BeSt, BRAGGSS (a subset of N = 53

samples), KI and LUMC were genotyped in one batch, and (7)

BRAGGSS (N = 87) and TEAR were genotyped in a second

batch, both using Illumina 660k chips, at the Broad Institute (8–

10). DREAM and AZ samples were genotyped in three batches,

one on 550K chip and two on 660K chips (manuscript in

preparation), and (11) ReAct samples were genotyped on Illumina

OmniExpress chips. Quality control (QC) filtering was done in

each genotyping batch, including filtering individuals with .5%

missing data, and filtering SNPs with .1% missing data, minor

allele frequency (MAF) ,1% and Chi-squared test of Hardy

Weinberg equilibrium PHWE,1025. We then used individual-

pairwise identity-by-state estimates to remove occasional related

and potentially contaminated samples. Data processing and QC

were performed in PLINK [30]. Principal Components Analysis

(PCA) was performed using EIGENSTRAT [31] (default settings)

on the combined dataset using 20,411 SNPs genotyped across all

datasets. Ethnicity outliers including all individuals of non-

European decent were identified and removed, and the first three

eigenvectors were used as covariates in GWAS.

Imputation was conducted on each of eleven datasets separately,

using the IMPUTE v1 software [32] and haplotype-phased
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HapMap Phase 2 (release 22) European CEU founders as a

reference panel. Imputation of BRASS and EIRA was previously

reported [28,33], and we followed the same imputation procedures

for the remaining datasets. Imputation yielded posterior genotype

probabilities as well as imputation quality scores at SNPs not

genotyped with a minor allele frequency $1% in HapMap CEU.

We removed imputed SNPs with imputation ‘info’ scores ,0.5 or

MAF ,1% in any of the datasets.

Expression profile and eQTL data
Gene expression levels were quantified using mRNA derived

from peripheral blood mononuclear cells (PBMCs) using Affyme-

trix Human Genome U133 Plus 2.0, for 255 multiple sclerosis

patients in the Comprehensive Longitudinal Investigation of MS

at the Brigham and Women’s Hospital [34], either untreated

(N = 83) or treated with interferon-beta (N = 105) or glatiramer

acetate (N = 67). The raw intensity values were subject to quality

control based on the recommended pipeline available in the

simpleaffy and affyPLM R Bioconductor packages, and were then

normalized using GCRMA (N = 228). The data are available on

the Gene Expression Omnibus website (GSE16214). Expression

levels for 17,390 probes mapping to 9,665 Ensembl transcripts

were adjusted for confounding factors including age, gender, drug

and batch using principle components and Bayesian factor analysis

[35], and used in eQTL association analyses. Genotype data were

collected on the Affymetrix 550K GeneChip 6.0 platform as a part

of a previously published study [36]. Allelic dosages from imputed

data (HapMap Phase II CEU samples; .2 million SNPs, MACH

imputation quality .0.1 and MAF. = 0.05) were used for

association analysis. Cis-eQTLs were identified +/21 Mb of

transcription start sites (TSS) in the 1q23 locus region. Significance

was evaluated by 10,000 permutations per gene, and false

discovery rates were calculated based on cis-eQTL analyses in

the total of 9,665 genes [37].

Additional expression profile data were available for subsets of

samples that were part of two cohorts in our GWAS. Expression

data from patients enrolled in the BRASS registry have been

previously published [38]. Expression data were collected on

Affymetrix Gene Chip U133 Plus 2 microarrays. BRASS patients

had either cross-sectional expression data (n = 132, assayed at the

time the patient was enrolled in BRASS) or pre- and post-

treatment expression data (n = 17 samples, 8 treated with

etanercept). Of these, n = 87 patients had expression and GWAS

data. For patients with pre- and post-treatment data, we used the

‘‘baseline’’ pre-treatment expression data for cross-sectional

analysis. In ABCoN, 65 RA patients (n = 23 treated with

etanercept) had both pre- and post-treatment expression data, as

well as DDAS clinical data [39], and n = 45 patients had

expression and GWAS data. As with BRASS, we use the

‘‘baseline’’ pre-treatment expression data for cross-sectional

analysis. For ABCoN expression profile data were collected on

Illumina Human WG6v3 microarrays and were quantile normal-

ized according to Illumina recommended protocols. Within both

BRASS and ABCoN, expression data were normalized to the

mean and standard deviation within each collection. For

prospective analyses of expression data and DDAS, we combined

BRASS and ABCoN to include 31 etanercept-treated patients and

78 anti-TNF-treated patients.

Statistical analyses
In our primary GWAS analysis, we tested each SNP for

association with DDAS using linear regression adjusted for

baseline DAS and the first 3 PCA eigenvectors in each collection.

In our secondary GWAS analysis, we modeled SNPs predicting

EULAR good response versus EULAR non-response using logistic

regression, again adjusting for start-DAS value and the first three

eigenvectors. Association analysis was done using SNPTEST [32]

assuming an additive genetic model. Genomic control lGC values

[40] for genotyped SNPs only and all SNPs were calculated, and

no inflation or deflation was observed in the distributions of

association test results. We then conducted inverse variance-

weighted meta-analysis to combine results across the four datasets,

and conducted Cochran’s Q tests for heterogeneity using the b
coefficients [41]. We further divided samples into 3 subsets

according to drug (etanercept, infliximab or adalimumab). GWAS

analysis for each group followed the same analysis procedure.

Meta-analysis and heterogeneity tests were conducted using SAS.

Expression analyses utilized linear regression or Spearman rank

correlation, also using SAS. We tested for effects of cohort, age,

gender and concurrent methotrexate, and results are shown using

significant covariates as indicated.

Supporting Information

Figure S1 Quantile–quantile (QQ) plots for DDAS and response

analysis, with genomic control lGC values.

(TIF)

Figure S2 GWAS results for the good response versus non-

response phenotype. Shown are strengths of association (2Log10

P-value) for each SNP versus position along chromosomes 1 to 22.

A) All samples (n = 1,708). B) Etanercept-treated patients (n = 472).

C) Infliximab-treated patients (n = 599). D) Adalimumab-treated

patients (n = 636).

(TIF)

Figure S3 Forest plot of replication results for the CD84 SNP

rs6427528, in patients treated with anti-TNF drugs other than

etanercept (infliximab & adalimumab).

(TIF)

Figure S4 Forest plot of CD84 result in patients treated with

etanercept, subset by all collections.

(TIF)

Figure S5 Patterns of linkage disequilibrium (LD) at the CD84

locus in HapMap. Shown patterns of LD for CEU (top panel) and

CHBJPT (bottom panel).

(TIF)

Table S1 Sample information for each of thirteen clinical

batches.

(DOC)

Table S2 Clinical multivariate model for the DDAS phenotype.

(DOC)

Table S3 GWAS results for all SNPs achieving P,1026 from

any analysis.

(XLS)

Table S4 Sample and clinical data summary for replication

samples.

(DOC)
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