151 research outputs found
Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope
We report the first detection of the gravitational lensing of the cosmic
microwave background through a measurement of the four-point correlation
function in the temperature maps made by the Atacama Cosmology Telescope. We
verify our detection by calculating the levels of potential contaminants and
performing a number of null tests. The resulting convergence power spectrum at
2-degree angular scales measures the amplitude of matter density fluctuations
on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The
measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology
predictions. Since the amplitude of the convergence power spectrum scales as
the square of the amplitude of the density fluctuations, the 4-sigma detection
of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version
accepted by Physical Review Letters. Likelihood code can be downloaded from
http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
The Atacama Cosmology Telescope: A Measurement of the 600< ell <8000 Cosmic Microwave Background Power Spectrum at 148 GHz
We present a measurement of the angular power spectrum of the cosmic
microwave background (CMB) radiation observed at 148 GHz. The measurement uses
maps with 1.4' angular resolution made with data from the Atacama Cosmology
Telescope (ACT). The observations cover 228 square degrees of the southern sky,
in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at
arcminute angular scales is particularly sensitive to the Silk damping scale,
to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by
radio sources and dusty galaxies. After masking the 108 brightest point sources
in our maps, we estimate the power spectrum between 600 < \ell < 8000 using the
adaptive multi-taper method to minimize spectral leakage and maximize use of
the full data set. Our absolute calibration is based on observations of Uranus.
To verify the calibration and test the fidelity of our map at large angular
scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP
power spectrum from 250 < ell < 1150. The power beyond the Silk damping tail of
the CMB is consistent with models of the emission from point sources. We
quantify the contribution of SZ clusters to the power spectrum by fitting to a
model normalized at sigma8 = 0.8. We constrain the model's amplitude ASZ < 1.63
(95% CL). If interpreted as a measurement of sigma8, this implies sigma8^SZ <
0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly
to a 6-parameter LCDM model plus terms for point sources and the SZ effect is
consistent with these results.Comment: 15 pages, 8 figures. Accepted for publication in Ap
The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps
The Atacama Cosmology Telescope (ACT) is currently observing the cosmic
microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277
GHz. In this paper, we present ACT's first results. Data have been analyzed
using a maximum-likelihood map-making method which uses B-splines to model and
remove the atmospheric signal. It has been used to make high-precision beam
maps from which we determine the experiment's window functions. This beam
information directly impacts all subsequent analyses of the data. We also used
the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ)
effect, and show five clusters previously detected with X-ray or SZ
observations. We provide integrated Compton-y measurements for each cluster. Of
particular interest is our detection of the z = 0.44 component of A3128 and our
current non-detection of the low-redshift part, providing strong evidence that
the further cluster is more massive as suggested by X-ray measurements. This is
a compelling example of the redshift-independent mass selection of the SZ
effect.Comment: 16 pages, 10 figures. Accepted for publication in ApJS. See Marriage
et al. (arXiv:1010.1065) and Menanteau et al. (arXiv:1006.5126) for
additional cluster result
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra
We present cosmological parameters derived from the angular power spectrum of
the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz
over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008
season. ACT measures fluctuations at scales 500<l<10000. We fit a model for the
lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz
and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from
radio and infrared point sources, and clustered power from infrared point
sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be
B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary
cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and
source power. The LCDM cosmological model is a good fit to the data, and LCDM
parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits,
with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB
lensing is disfavored at 2.8sigma. By measuring the third to seventh acoustic
peaks, and probing the Silk damping regime, the ACT data improve limits on
cosmological parameters that affect the small-scale CMB power. The ACT data
combined with WMAP give a 6sigma detection of primordial helium, with Y_P =
0.313+-0.044, and a 4sigma detection of relativistic species, assumed to be
neutrinos, with Neff = 5.3+-1.3 (4.6+-0.8 with BAO+H0 data). From the CMB alone
the running of the spectral index is constrained to be dn/dlnk = -0.034 +-
0.018, the limit on the tensor-to-scalar ratio is r<0.25 (95% CL), and the
possible contribution of Nambu cosmic strings to the power spectrum is
constrained to string tension Gmu<1.6 \times 10^-7 (95% CL).Comment: 20 pages, 13 figures. Submitted to ApJ. This paper is a companion to
Hajian et al. (2010) and Das et al. (2010
The Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos
The scattering of cosmic microwave background (CMB) photons off the
free-electron gas in galaxies and clusters leaves detectable imprints on high
resolution CMB maps: the thermal and kinematic Sunyaev-Zel'dovich effects (tSZ
and kSZ respectively). We use combined microwave maps from the Atacama
Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ
galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and
DR12), to study the gas associated with these galaxy groups. Using individual
reconstructed velocities, we perform a stacking analysis and reject the no-kSZ
hypothesis at 6.5, the highest significance to date. This directly
translates into a measurement of the electron number density profile, and thus
of the gas density profile. Despite the limited signal to noise, the
measurement shows at high significance that the gas density profile is more
extended than the dark matter density profile, for any reasonable baryon
abundance (formally for the cosmic baryon abundance). We
simultaneously measure the tSZ signal, i.e. the electron thermal pressure
profile of the same CMASS objects, and reject the no-tSZ hypothesis at
10. We combine tSZ and kSZ measurements to estimate the electron
temperature to 20% precision in several aperture bins, and find it comparable
to the virial temperature. In a companion paper, we analyze these measurements
to constrain the gas thermodynamics and the properties of feedback inside
galaxy groups. We present the corresponding LOWZ measurements in this paper,
ruling out a null kSZ (tSZ) signal at 2.9 (13.9), and leave their
interpretation to future work. Our stacking software ThumbStack is publicly
available at https://github.com/EmmanuelSchaan/ThumbStack and directly
applicable to future Simons Observatory and CMB-S4 data.Comment: Accepted in Physical Review D, Editors' Suggestio
Recommended from our members
Inflation Physics from the Cosmic Microwave Background and Large Scale Structure
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe.
A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.Astronom
Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4
We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 deg2 of the sky. Our galaxy sample, which covers ∼ 4143 deg2, is divided into six redshift bins spanning the redshift range of 0.20<z<1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S8 ≡ σ8(Ωm/0.3)0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance
Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster
- …