162 research outputs found

    Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    Get PDF
    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P-T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5-3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10-20Myr (after 400-600km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the P-T paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable li

    Quartz microstructures in nature and experiment — evidence of rapid plastic deformation and subsequent annealing

    Get PDF
    Quartz microstructures produced in short-term deformation and annealing experiments are compared with those in naturally deformed vein quartz in cores from the Long Valley Exploratory Well (Long Valley Caldera, California). The experiments are designed to simulate i) co-seismic deformation of quartz in the uppermost plastosphere and ii) annealing during post-seismic stress relaxation. The experiments are performed in a modified Griggs type solid medium apparatus. Natural polycrystalline quartz samples (grain size on the order of millimetres) are deformed at a temperature of 400°C, a confining pressure of 2GPa, and strain rates of ca. 10−4 s−1. The differential stress reaches 2–4GPa and the irreversible axial shortening is typically a few percent. In some experiments the samples have subsequently been annealed for ca. 14–15 h at elevated temperatures of 800–1000°C and low stresses (quasi-hydrostatic or nonhydrostatic conditions)...conferenc

    Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    Get PDF
    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facies conditions, is sensitive to changes in slab dip. A direct relationship between subduction rate and exhumation rate results for different slab dips that does not depend on the used mantle flow law. Thermal regimes predicted by different numerical models are compared to PT paths followed by continental crustal slices involved in ancient and recent subduction zones, making ablative subduction a suitable pre-collisional mechanism for burial and exhumation of continental crust.Comment: 10 figures, 3 table

    Extensional faulting on Tinos island, Aegean sea, Greece: How many detachments?

    Get PDF
    Zircon and apatite fission track (ZFT and AFT) and (U-Th)/He, 40Ar/39Ar hornblende, and U-Pb zircon ages from the granites of Tinos Island in the Aegean Sea, Greece, suggest, together with published ZFT data, that there are three extensional detachments on Tinos. The Tinos granites crosscut the Tinos detachment. Cooling of the granites was controlled by the Livadi detachment, which occurs structurally above the Tinos detachment. Our U-Pb zircon age is 14.6 ± 0.2 Ma and two 40Ar/39Ar hornblende ages are 14.4 ± 0.4 and 13.7 ± 0.4 Ma. ZFT and AFT ages go from 14.4 ± 1.2 to 12.2 ± 1.0 Ma and 12.8 ± 2.4 to 11.9 ± 2.0 Ma. (U-Th)/He ages are from 10.4 ± 0.2 to 9.9 ± 0.2 Ma (zircon) and 11.9 ± 0.5 to 10.0 ± 0.3 Ma (apatite). All ages decrease northeastward in the direction of hanging wall transport on the Livadi detachment and age-distance relationships yield a slip rate of 2.6 (+3.3 / −1.0) km Ma−1. This rate is smaller than a published slip rate of 6.5 km Ma−1 for the Vari detachment, which is another detachment structurally above the Tinos detachment. Because of the different rates and because published ZFT ages from the footwall of the Vari detachment are ∼10 Ma, we propose that the Vari detachment has to be distinguished from the older Livadi detachment. We discuss various models of how the extensional detachments may have evolved and prefer a scenario in which the Vari detachment cut down into the footwall of the Livadi detachment successively exhuming deeper structural units. The thermochronologic ages demonstrate the importance of quantitative data for constraining localization processes during extensional deformation

    Integration of natural data within a numerical model of ablative subduction: A possible interpretation for the Alpine dynamics of the Austroalpine crust

    Full text link
    A numerical modelling approach is used to validate the physical and ge- ological reliability of the ablative subduction mechanism during Alpine con- vergence in order to interpret the tectonic and metamorphic evolution of an inner portion of the Alpine belt: the Austroalpine Domain. The model pre- dictions and the natural data for the Austroalpine of the Western Alps agree very well in terms of P-T peak conditions, relative chronology of peak and exhumation events, P-T-t paths, thermal gradients and the tectonic evolu- tion of the continental rocks. These findings suggest that a pre-collisional evolution of this domain, with the burial of the continental rocks (induced by ablative subduction of the overriding Adria plate) and their exhumation (driven by an upwelling flow generated in a hydrated mantle wedge) could be a valid mechanism that reproduces the actual tectono-metamorphic config- uration of this part of the Alps. There is less agreement between the model predictions and the natural data for the Austroalpine of the Central-Eastern Alps. Based on the natural data available in the literature, a critical discus- sion of the other proposed mechanisms is presented, and additional geological factors that should be considered within the numerical model are suggested to improve the fitting to the numerical results; these factors include varia- tions in the continental and/or oceanic thickness, variation of the subduction rate and/or slab dip, the initial thermal state of the passive margin, the oc- currence of continental collision and an oblique convergence.Comment: 11 Figures and 3 Tabe

    Structural, petrological and chemical analysis of syn-kinematic migmatites: insights from the Western Gneiss Region, Norway.

    Get PDF
    International audienceEvidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnets that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (1) as zoned segregations found in high-pressure (HP) (ultra) mafic bodies, (2) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss, and (3) as undeformed pegmatites cutting the main Caledonian structures. Segregations post-date the eclogite facies foliation and predate the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation and undeformed pegmatites are post-kinematic and were formed at the end of the deformation history. Geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca-poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K-poor compositions corresponds to segregation hosted in (ultra) mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward-buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800°C implies the presence of an H2O-rich fluid phase at great depth to facilitate H2O-present partial melting
    • …
    corecore