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Abstract

Tensile strength is paramount for reliable simulation of hydraulic fracturing experiments on
all scales. Tensile strength values depend strongly on the test method. Three different labora‐
tory tests for tensile strength of rocks are compared. Test methods employed are the Brazilian
disc test (BDT), modified tension test (MTT) and hydraulic fracturing experiments with hollow
cylinders (MF = Mini Frac). Lithologies tested are a micritic limestone, a coarse-grained marble,
a fine-grained Ruhrsandstone, a medium-grained rhyolite, a medium- /coarse-grained
andesite and a medium grained sandstone. Test results reveal a relationship between the area
under tensile stress at failure and the measured tensile strength. This relationship becomes
visible when the area under tensile strength ranges over one order of magnitude from 450 to
4624 mm2. This observation becomes relevant when selecting the tensile strength values of
lithologies.

Keywords: hydraulic fracturing, Brazilian Disc test, Modified Tension Test, Acoustic Emission,
numerical simulation

1. Introduction

Tensile strength tests are widely applied in rock mechanics to obtain input parameters for
planning of hydraulic fracturing on all scales. In literature only few experimental data sets
are  published  dealing  with  samples  size  effects  on  tensile  strength  tests  [1,2]  or  the
comparison of different tensile tests in general [1,3]. Usually, results of laboratory tensile
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tests are taken to be size independent when used as input parameter for numerical studies
at different spatial sizes.

We compare the results of 3 different, easily applicable laboratory tests for tensile strength of
rocks. The sample set comprises a micritic limestone, a coarse-grained marble, a fine-grained
Ruhr-Sandstone, a medium-grained rhyolite, a medium- /coarse-grained andesite and a
medium grained sandstone. All tested rocks were characterized petrographically as well as by
ultrasonic velocities, density, porosity, permeability, static, dynamic elastic moduli and
compressive strength. In order to determine the effects of specimen size on test results, we
carried out BDT according to ISRM [4] with disc diameters of 30, 40, 50, 62, 75 and 84 mm,
respectively. The recently presented MTT [5] was used as a tensile strength test with an
approximately uniform tensile stress distribution. Hydraulic tensile strength was evaluated
by MF experiments (core diameter 40 and 62 mm; borehole/diameter ratio 1:10) under uniaxial
compression [6]. MF pressurization was performed with a constant fluid volume rate of 0.1
ml/s representing a stress rate of 0.3 MPa/s. In all tests relevant acoustic emission (AE) values
have been evaluated to get additional information on the failure processes.

2. Materials and methods

2.1. Sample material

To investigate the influence of rock properties on tensile test methods, six different rock types
were tested. Bebertal sandstone, a medium grained Permian sandstone from a quarry near
Magdeburg, Germany. Ruhrsandstone, a fine-grained and massive Carboniferous arcose from
the Ruhr area in Germany. A medium to coarse grained, jointed Permian andesite from the
Doenstedt Eiche quarry near Doenstedt, Germany. A medium grained, highly jointed Permian
rhyolite from the Holzmuehlental quarry near Flechtingen, Germany. A micritic Jurassic
limestone from a quarry near Treuchtlingen, Germany and a coarse grained marble from
Carrara, Italy. The rocks’ petrophysical properties, namely bulk density, grain density,
compressional wave speed, porosity, permeability, cohesion and friction angle are listed in
Table 1.

2.2. Petrophysical characterization

Dry densities are calculated geometrically based on geometrical properties, grain densities are
measured according to DIN 18124. Compressional wave velocities are measured at each core
with a Geotron USG 40/UST 50-12 at room temperature and in dry condition. Porosities are
derived from the difference between grain density and geometrical density of the oven-dried
samples. Permeabilities are evaluated via a constant head test on the hollow cylinder samples
used for the MF tests [7]. Bebertal-sandstones are permeable enough to use a simple axial flow-
through test with a maximum pressure difference of up to 3 bars. The samples are sealed off
with rubber jackets to minimize water-flow along the sample surface. Unconfined compressive
strengths and static moduli of elasticity are measured by uniaxial compressive tests [8].
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Rock type

(location)

ρd

[g/cm3]

ρs

[g/cm3]

vp

[m/s]

Φ

[%]

k

[m²]

c

[MPa]

φ

[°]

Marble

(Carrara)

2.71

±0.002

2.721

±0.003

5.67

±0.06

0.40 1E-19 29 22

Limestone

(Treuchtlingen)

2.56

±0.008

2.713

±0.002

5.59

±0.05

5.64 1E-18 27 53

Ruhrsandstone

(Ruhr area)

2.57

±0.006

2.688

±0.008

4.61

±0.13

4.39 8E-18 36 50

Rhyolite

(Flechtingen)

2.63

±0.015

2.657

±0.011

5.39

±0.34

1.02 9E-19 20-36 55

Andesite

(Dönstedt)

2.72

±0.023

2.734

±0.006

5.26

±0.28

0.51 - 20-41 50

Sandstone

(Bebertal)

2.66

±0.061

2.44

±0.059

3.61

±0.61

8.27 11E-15 15 45

Table 1. Averaged values of petrophysical properties of the rock samples. ρd dry bulk density, ρs grain density, vp
compressional wave velocity, Φ porosity, k permeability, c cohesion, φ friction angle.

2.3. Testing procedure of the tensile strength tests

All experiments are performed in a stiff servo-hydraulic loading frame from Material Testing
Systems (MTS) with a load capacity of 4000 kN. For further details on the technical specifica‐
tions see Table 2.

Device (manufacturer) name max. capacity accuracy BDT MTT MF

Axial load cell (Althen) CPA-50 500 KN ± 100 N x x x

Axial displ. transducer (Scheavitz) MHR 250 LVDT 1

& 2
6.3 mm ± 1∙10-4 mm x x x

Displ. transducer at pressure intensifier (HBM) WA

100 mm LVDT 3
100 mm ± 1∙10-3 mm x

Load cell for Hoek Cell

Load cell for pressure intensifier (Burster)

8219R-3000
300 MPa ± 0,03 MPa x

Table 2. Technical specifications of the measurement system.

Acoustic Emission (AE) signals are acquired with an AMSY-5 Acoustic Emission Measurement
System (Vallen Systeme GmbH, Germany) equipped with up to 6 Sensors of type VS150-M.
The Sensors are sensitive in a frequency range of 100-450 kHz with a resonance frequency of
150 kHz and a preamplification of 34 dBAE. Due to machine noise in the range below 100 kHz
incoming signals are filtered by a digital bandpass-filter in a frequency range of 95-850 kHz.
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AE data are sampled by a sampling rate of 10 kHz. The sensors are fixed using hot-melt
adhesive to ensure best coupling characteristics. Pencil-break tests (Hsu-Nielsen source) and
sensor pulsing runs (active acoustic emission by one sensor) are used to ensure good sensor
coupling of the sensor on the sample.

2.3.1. Hydraulic fracturing core experiments (MF) procedure

Minifrac experiments are carried out mainly on 40 mm cores with a borehole diameter of 4mm.
Furthermore some 62 mm cores with a borehole of 6 mm diameter are tested. The samples are
loaded axially up to 5 MPa to ensure that the packer mechanism is tight and seals off the
borehole openings at the top and at the bottom. The borehole pressure was raised servo
controlled with a fixed volume rate of 0.1 ml/s that results in a pressure rate of approximately
0.3 MPa/s. All MF tests are monitored by Acoustic Emissions with four sensors glued directly
to the samples and a fifth sensor placed at the incoming hydraulic line.

2.3.2. Brazilian Disc Tests (BDT) procedure

All Brazilian disc tests are carried out following the ISRM suggested method [4] at a load rate
of 200 N/s. Disc diameters used are 30, 40, 50, 62, 75 and 84 mm, whereas the length to diameter
ratio (L/D) was constant at 0.5. All tests are monitored by one AE-sensor glued directly in the
middle of the disc specimen. The size dependency is tested with discs from Ruhrsandstone,
marble, rhyolite and limestone.

2.3.3. Modified Tension Test (MTT) procedure

The MTT tests are driven load controlled at a rate of 200 N/s that corresponds to a stress rate
of 0.02 MPa/s. The axial force is applied from the top (Figure 1). MTT test samples are observed
by up to 6 AE-Sensors glued directly to the specimen. The samples were overcored with 62
mm and 30 mm diameters where the overlapping height is 1/3 of the total sample height (Figure
1). The centralizing of the drills was achieved by using a former plate to adjust the sample
before drilling. Despite assiduously arrangement the eccentricity of the overcoring was in the
range of up to 3 mm due to the imprecise vertical guidance of a standard drilling machine. In
order to test the influence of eccentricity we also prepared samples with an eccentricity of 14
mm.

3. Experimental results

3.1. Brazilian disc test size dependency

The size dependency of the absolute size of the Brazilian disc test discs on the tensile strength
is shown in Figure 2. Overall 138 Brazilian disc tests are undertaken for up to 6 sizes and four
lithologies. The disc diameters, ranging from 30-84 mm, represent the sizes that are mostly
tested in laboratories to determine the BDT tensile strength of rock samples. The results of the
size dependency tests show no significant relationship between the sizes of the tested disc to
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Figure 1. Sketches of the three tensile test methods. A: BDT side view, B: MF top view, C: MTT side view cross section
(upper) and top view (lower).
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its calculated tensile strength as long as the length to diameter ratio is held constant as
suggested by the ISRM suggested method at a value of 0.5 [4]. There is a marginal tendency
for the standard deviation of the tensile strength to decrease with increasing disc size.

Figure 2. Size dependency of the BDT disc size on the tensile strength for four lithologies. Circles represent the mean
values, bars stand for the standard deviation.

3.2. MF, BDT and MTT tensile strength results

Three different methods for the determination of tensile strength are compared regarding their
results. 201 Brazilian disc tests, 31 Minifrac tests and 15 Modified tension tests form the basis
of the data evaluation, where σt

BDT , σt
MF  and σt

MTT  are the tensile strengths indexed by the
used method. BDT tensile strengths are calculated as follows [4].

BDT: σt
BDT =2P / πDt (1)

Where P is the force at failure, D is the disc diameter and t the disc thickness.

For the MF tests, assuming the rocks to be nearly impermeable and therefore neglecting a
relevant pore pressure influence the tensile strength is given directly by the breakdown
pressure Pb [9].

MF: σt
MF = Pb (2)

MTT tensile strengths are evaluated by the formula given by [5].

MTT: σt
MTT = Fmax / ATZ = Fmax / (R 2π - r 2π) (3)
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Where R 2 and r 2 are the outer and inner radius, respectively (Figure 1). Mean values, standard
deviations and total number of tests for all three testmethods can be found in Table 3.

Lithology Test method Mean [MPa] Std. dev. [MPa] N [-]

Ruhrsandstone

BDT 13.2 2.1 32

MF 19.0 3.0 10

MTT 5.8 1.0 3

rhyolite

BDT 15.8 3.2 39

MF 20.1 5.5 5

MTT 4.9 1.4 2

limestone

BDT 8.2 2.2 36

MF 10.2 1.7 5

MTT 4.8 1.0 2

marble

BDT 6.4 1.5 32

MF 7.8 1.3 4

MTT 4.3 1.2 2

andesite

BDT 14.6 4.5 23

MF 14.4 5.1 4

MTT 8.7 4.4 3

Bebertal sandstone

BDT 4.1 1.2 39

MF 4.3 2.0 3

MTT

MTT eccentric

2.4

1.0

-

5E-3

1

2

Table 3. Comparison of tensile strength out of three test methods.

One of the main observations is the very low tensile strength measured with the Modified
Tension Test method. The MTT results mean values are in the range of 66 % down to 31 % of
those obtained with the BDT. In addition to the low tensile strengths obtained by the MTT an
eccentricity of the overcoring yields to an additional underestimation of the tensile strength
values. The BDT and MF results seem to be more similar. The BDT results lie in the range of
70 % to 100 % of the MF tensile strength, so the MF test yields the highest tensile strengths and
also to the highest standard deviations. All measurements are visualized in Figure 3. Doenstedt
andesite and Flechtingen rhyolite tensile strengths have the highest standard deviations of the
tested rock types. This variance is due to the high amount of natural joints that are assumed
to have a different tensile strength with respect to the intact parts. Therefore the tensile strength
scattering is the result of the material heterogeneity itself.
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Figure 3. Results of all tensile strength test. BDT: Brazilian Disc Test, MF: Minifrac, MTT: Modified Tension Test. Hollow
circle in Bebertal sandstone MTT tests represents two results of the highly eccentrical MTT tests.

3.3. Acoustic Emissions results

Acoustic emission data obtained during the tests give rough insights into the failure processes.
It is obvious that all tests end with a spalling of the specimens in parts due to a complete tensile
failure. Simple AE count analysis show that the BDT is accompanied with an immense hit-rate
long before total failure in comparison to the relatively quiet pre-failure phases of the MF and
MTT tests. In good agreement with theoretical considerations of the stress distribution in the
Brazil disc [1] these events are most likely due to compressional failure at the top and bottom
of the disc, accompanied with crack propagation and coalescence before peak load (Figure 4).

Figure 4. AE hits per 0.5 sec., BDT left, MF middle and MTT right showing the huge difference in AE hits before total
failure of the sample.

4. Numerical model

We investigate the effect of eccentricity of the overcoring for the MTT samples by a numerical
simulation. A finite element study that has been performed by Plinninger et al. [10] that shows
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a uniform tensile stress distribution in the annulus of the test samples. It is arguably if this
model is the right tool for modeling a tensile stress distribution in rock samples prior to failure.
A simple linear elastic 3D FEM model reveals tensile stress concentrations at the edges of the
rims in the sample (Figure 5). Fractures may be initiate there at relative low axial forces.

During preparation of the samples it becomes obvious that exact centralization of the inner
overcoring is not always given. Two Bebertal sandstone samples were prepared with a
eccentricity of 14 mm resulting in a minimum rim width of 2 mm instead of 16 mm for a
perfectly centralized sample. The average eccentricity of our samples is in the range of up to
3 mm. Tensile stress redistribution due to eccentricity is modeled as well and can easily double
the tensile stress in the thinner rim of the annulus (Figure 5).

Figure 5. Slice through a linear elastic 3D FEM model of MTT tensile test. Values of axial stress are given in MPa where
negative values stand for tensile stress. Left model represents a perfectly centralized sample. Right model shows the
stress distribution for a eccentricity of 6 mm towards the left edge.

5. Discussion

247 tensile strength test results of BDT, MF and MTT tests vary considerable within one
lithology (Figure 6). Therefore it is not trivial to give a reliable prediction of the tensile strength
parameter. Results of the BDT tests show no significant variation with respect to the specimen
size, as long as the aspect ratio is held constant. Nevertheless the tensile strength data scattering
is high, so that it may obscure existing trends. Acoustic Emission evaluation shows that during
the BDT multiple fracturing mechanisms are present. Before total fracturing of the sample by
a tensile rupture there is a high amount of AE activity that is most likely related to compres‐
sional failure at the top and bottom of the disc. Beside this, compressional stress concentrations
and the inhomogeneous tensile stress distribution may lead to tensile cracks before peak load.
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MF results lead to the highest tensile strengths in this comparison where there seem to be no
differences in tensile strength when using a 4 mm or a 6 m borehole for pressurization. Again
one has to take into account that the high amount of tensile strength scattering for these tests
inhibits a statement regarding a borehole size dependency.

The results of the MTT tests give the lowest tensile strengths and very low standard deviations.
Latter may be related to the small amount of testes MTT per lithology. Furthermore all MTT
are prepared using the same sample sizes. A major problem of the MTT experiments is the
centralization of the boreholes. An eccentricity yields to a significant inhomogeneity of the
tensile stress distribution in the sample (Figure 5). Numerical simulations of the MTT eccen‐
tricity effect together with the two eccentric MTT samples (Figure 3) show that the calculated
tensile strength may be underestimated massively. One reason for the apparently lower tensile
strength measured using the MMT might be the applicability of Equation (3). In deriving the
equation, it was assumed that, when the peak load is approached, the tensile stress distribution
is almost uniform in the area defined as ATZ  [5]. This may only be true if the material is highly
ductile. However, for brittle rocks, especially for highly fractured rocks, fracture propagation
may occur and lead to ultimate failure at a much lower load as suggested by Equation (3) due
to stress concentration (Figure 5).

Figure 6. Tensile strength results plotted against the assumed area under tension. BDT: diameter x thickness, MF: sur‐
face area of the borehole and MTT: twice the surface area between the outer and inner borehole, upper and lower.

Testmethod BDT MF MTT

Area under 1,51,5 450-3400 mm2 1005-3393 mm2 4624 mm2

Calculation D ⋅ t 2⋅π ⋅ rbh ⋅ l 2⋅ (π ⋅ (R2 - r2))

Table 4. Estimated area subjected to tensile stress for the different tensile tests. D: BDT disc diameter, t : BDT disc
thickness, rbh : MF borehole radius, l : MF sample height, R: MTT outer borehole radius, r : MTT inner borehole radius.

Main difference in all experiments and the reason for choosing these are the areas that are
under tensile stress at the point of failure. The calculated tensile strengths compared to the
area perpendicular to the maximum tensile stress show a negative trend for the tensile strength
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with increasing area being set under tensile stress. That is reasonable in terms of the statistical
theory of strength. Especially for the igneous rocks it seems evident, that the probability to set
a healed joint under a critical tension rises with the size of the sample volume that is under
tensional stress. For the selection of the tensile strength test one should keep in mind that
depending on the lithology the apparent tensile strength appears to be a function of the area,
or more exact of the volume under tensile stress. Thus, for a relative homogeneous rock a less
severe reduction of the measured tensile strength with size will be visible as it will be at the
highly fractured igneous rocks tested in this study.

It is arguable and may not be appropriate to study the effect of area/volume under tensile stress
on the measured tensile strength using the combined results from different types of tests,
especially if the different tests tend to give different average measured tensile strengths.
Furthermore the negative trend of tensile strength with respect to the stressed area/volume is
not that obvious for the single test methods. Especially the assumption of uniform tensile stress
distribution close to peak load in the annulus [5] for the MTT samples seems not to be
comprehensible. It may hold for ductile materials but not for brittle ones. Therefore the validity
of equation (3) for the calculation of the tensile strength is questionable. Nevertheless the
resulting tensile strengths are treated as the same rock property when used as input parameters
for calculations. This is very problematic due to its huge variation as shown in the tests. The
correlation of the calculated tensile strength with the stressed area/volume is one possible
approach to account for the decreasing apparent tensile strength behavior.
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