26 research outputs found

    Mechanism of gas cell stability in bread making

    Get PDF
    Doctor of PhilosophyDepartment of Grain Science and IndustryFinlay I. MacRitchieExpansion of dough and hence breadmaking performance is postulated to depend on a dual mechanism for stabilization of inflating gas bubbles. Two flours were used in this study, one from the wheat variety Jagger (Jagger) and the other from a composite of soft wheat varieties (soft). The primary stabilizing mechanism is due to the gluten-starch matrix surrounding the bubble. The secondary mechanism operates when gas bubbles come into close contact during later proofing and early baking. When discontinuities occur in the gluten-starch matrix surrounding gas bubbles, thin liquid lamellae stabilized by adsorbed surface active compounds, provide a secondary stabilization. A key parameter in the primary stabilizing dough film is thought to be the property of strain hardening. Jagger flour gave higher test-bake loaf volume than soft wheat flour and higher strain hardening index for dough. Rheological properties of doughs were varied by addition of protein fractions prepared by pH fractionation. Fractions were characterized by SE-HPLC and MALLS. The molecular weight distribution (MWD) of fractions progressively shifted to higher values as the pH of fractionations decreased. Mixograph peak development time paralleled the MWD. However, the strain hardening index and the test-bake loaf volume increased with increasing MWD up to a point (optimum), after which they declined. At a given strain rate the behavior at the optimum appeared to result from slippage of the maximum number of statistical segments between entanglements, without disrupting the entangled network of polymeric proteins. Shift of MWD to MW higher than the optimum results in a stronger network with reduced slippage through entanglement nodes, whereas a shift to lower MWs will decrease the strength of the network due to less number of entanglements per chain. In order to study the secondary stabilizing mechanism, different lipid fractions were added incrementally to the defatted flours. No effects were observed on the rheological properties of the dough. However, large effects on the loaf volume were measured. The additives used were the total flour lipid and its polar and non polar fractions and the fatty acids palmitic, linoleic and myristic. Polar lipids and palmitic acid had positive or little effect on loaf volume respectively. Non polar lipid, linoleic and myristic acids had negative effects on loaf volume. 1 The different effects of the lipid fractions are thought to be related to the type of monolayer that is formed. Polar lipid and palmitic acid form condensed monolayers at the air/water interface whereas non polar lipid, linoleic and myristic acids form expanded monolayers

    Oxidation of commercial (a-type) zein with hydrogen peroxide improves its hydration and dramatically increases dough extensibility even below its glass transition temperature

    Get PDF
    To improve the rheological properties of zein doughs, a-type zein and zein-starch doughs were prepared with the oxidising agents, hydrogen peroxide and peroxidase, which strengthen gluten-based doughs by cross-linking. Hydrogen peroxide and peroxidase increased zein dough extensibility compared to preparation with water. Hydrogen peroxide prepared zein doughs were extensible and cohesive below zein's glass transition temperature. The doughs did not exude water and maintained flexibility when stored. Confocal laser scanning microscopy revealed that in zein-starch doughs prepared with hydrogen peroxide a thin continuous zein matrix was formed around the starch granules, whereas doughs prepared with water exhibited clumps of granules. SDS-PAGE of zein doughs and films treated with the oxidising agents showed no evidence of zein polymerisation, nor did Fourier transform infrared spectrometry reveal any significant changes in secondary structure. Further, hydrogen peroxide treatment did not increase zein film glass transition temperature, but it did increase transition enthalpy, and film water uptake increased with hydrogen peroxide concentration. The greatly increased extensibility of hydrogen peroxide prepared zein doughs and their improved water-holding are not due to oxidative cross-linking. It is proposed that the effects are primarily due to hydroxylation of amino acid aliphatic side chains, improving hydration through hydrogen bonding

    Bread aeration and dough rheology: an introduction

    No full text
    Aeration and rheology interact throughout the breadmaking process to create the distinctive and appealing structure of bread. Aeration during mixing provides oxygen for dough development and creates nuclei for the carbon dioxide produced by yeast during proving; the unique rheology of dough allows these bubbles to be retained to create a well risen dough piece that is set by baking. A wide range of methods have been applied to elucidate the origins of dough rheology and its outworking in relation to bread quality, and the mechanisms of aeration during mixing, moulding, proving and baking. This work has invigorated bread research and stimulated new scientific insights and industrial applications. These methods and insights, while continuing to improve bread quality, also have the potential to inform the improvement of the diverse range of bakery products
    corecore