90 research outputs found

    Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling

    Get PDF
    Heterotrophic CO2 fixation is a significant yet underappreciated CO2 flux in environmental carbon cycling. In contrast to photosynthesis and chemolithoautotrophy – the main recognized autotrophic CO2 fixation pathways – the importance of heterotrophic CO2 fixation remains enigmatic. All heterotrophs – from microorganisms to humans – take up CO2 and incorporate it into their biomass. Depending on the availability and quality of growth substrates, and drivers such as the CO2 partial pressure, heterotrophic CO2 fixation contributes at least 1 %–5 % and in the case of methanotrophs up to 50 % of the carbon biomass. Assuming a standing stock of global heterotrophic biomass of 47–85 Pg C, we roughly estimate that up to 5 Pg C might be derived from heterotrophic CO2 fixation, and up to 12 Pg C yr−1 originating from heterotrophic CO2 fixation is funneled into the global annual heterotrophic production of 34–245 Pg C yr−1. These first estimates on the importance of heterotrophic fixation of inorganic carbon indicate that this pathway should be incorporated in present and future carbon cycling budgets.</p

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

    Get PDF
    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved

    The data acquisition system for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given

    Rapid radioimmunoassay for the luteinizing hormone (LH) in serum

    No full text
    • 

    corecore