28 research outputs found

    Short-term exposure to carbon monoxide and myocardial infarction: A systematic review and meta-analysis  

    Get PDF
    BACKGROUND: Previous studies suggest an association between short-term exposure to carbon monoxide and myocardial infarction. We performed a systematic review and meta-analysis to assess current evidence on this association to support the update of the World Health Organization (WHO) Global Air Quality Guidelines. METHODS: We searched Medline, Embase and Cochrane Central Register of Controlled Trials to update the evidence published in a previous systematic review up to 30th September 2018 for studies investigating the association between short-term exposure to ambient carbon monoxide (up to lag of seven days) and emergency department visits or hospital admissions and mortality due to myocardial infarction. Two reviewers assessed potentially eligible studies and performed data extraction independently. Random-effects meta-analysis was used to derive the pooled risk estimate per 1 mg/m3 increase in ambient carbon monoxide concentration. Risk of bias in individual studies was assessed using a domain-based assessment tool. The overall certainty of the body of evidence was evaluated using an adapted certainty of evidence assessment framework. RESULTS: We evaluated 1,038 articles from the previous review and our updated literature search, of which, 26 satisfied our inclusion criteria. Overall, myocardial infarction was associated with exposure to ambient carbon monoxide concentration (risk ratio of 1.052, 95% confidence interval 1.017-1.089 per 1 mg/m3 increase). A third of studies were assessed to be at high risk of bias (RoB) due to inadequate adjustment for confounding. Using an adaptation of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework, the overall evidence was assessed to be of moderate certainty. CONCLUSIONS: This review demonstrated that the pooled risk ratio for myocardial infarction was 1.052 (95% CI 1.017-1.089) per 1 mg/m3 increase in ambient carbon monoxide concentration. However, very few studies originated from low- and middle-income countries

    Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study

    Get PDF
    Background: 3 billion people worldwide rely on polluting fuels and technologies for domestic cooking and heating. We estimate the global, regional, and national health burden associated with exposure to household air pollution. Methods: For the systematic review and meta-analysis, we systematically searched four databases for studies published from database inception to April 2, 2020, that evaluated the risk of adverse cardiorespiratory, paediatric, and maternal outcomes from exposure to household air pollution, compared with no exposure. We used a random-effects model to calculate disease-specific relative risk (RR) meta-estimates. Household air pollution exposure was defined as use of polluting fuels (coal, wood, charcoal, agricultural wastes, animal dung, or kerosene) for household cooking or heating. Temporal trends in mortality and disease burden associated with household air pollution, as measured by disability-adjusted life-years (DALYs), were estimated from 2000 to 2017 using exposure prevalence data from 183 of 193 UN member states. 95% CIs were estimated by propagating uncertainty from the RR meta-estimates, prevalence of household air pollution exposure, and disease-specific mortality and burden estimates using a simulation-based approach. This study is registered with PROSPERO, CRD42019125060. Findings: 476 studies (15·5 million participants) from 123 nations (99 [80%] of which were classified as low-income and middle-income) met the inclusion criteria. Household air pollution was positively associated with asthma (RR 1·23, 95% CI 1·11–1·36), acute respiratory infection in both adults (1·53, 1·22–1·93) and children (1·39, 1·29–1·49), chronic obstructive pulmonary disease (1·70, 1·47–1·97), lung cancer (1·69, 1·44–1·98), and tuberculosis (1·26, 1·08–1·48); cerebrovascular disease (1·09, 1·04–1·14) and ischaemic heart disease (1·10, 1·09–1·11); and low birthweight (1·36, 1·19–1·55) and stillbirth (1·22, 1·06–1·41); as well as with under-5 (1·25, 1·18–1·33), respiratory (1·19, 1·18–1·20), and cardiovascular (1·07, 1·04–1·11) mortality. Household air pollution was associated with 1·8 million (95% CI 1·1–2·7) deaths and 60·9 million (34·6–93·3) DALYs in 2017, with the burden overwhelmingly experienced in low-income and middle-income countries (LMICs; 60·8 million [34·6–92·9] DALYs) compared with high-income countries (0·09 million [0·01–0·40] DALYs). From 2000, mortality associated with household air pollution had reduced by 36% (95% CI 29–43) and disease burden by 30% (25–36), with the greatest reductions observed in higher-income nations. Interpretation: The burden of cardiorespiratory, paediatric, and maternal diseases associated with household air pollution has declined worldwide but remains high in the world’s poorest regions. Urgent integrated health and energy strategies are needed to reduce the adverse health impact of household air pollution, especially in LMICs. Funding: British Heart Foundation, Wellcome Trus

    Manganese-Enhanced T₁ Mapping in the Myocardium of Normal and Infarcted Hearts

    Get PDF
    Background. Manganese-enhanced MRI (MEMRI) has the potential to identify viable myocardium and quantify calcium influx and handling. Two distinct manganese contrast media have been developed for clinical application, mangafodipir and EVP1001-1, employing different strategies to mitigate against adverse effects resulting from calcium-channel agonism. Mangafodipir delivers manganese ions as a chelate, and EVP1001-1 coadministers calcium gluconate. Using myocardial T1 mapping, we aimed to explore chelated and nonchelated manganese contrast agents, their mechanism of myocardial uptake, and their application to infarcted hearts. Methods. T1 mapping was performed in healthy adult male Sprague-Dawley rats using a 7T MRI scanner before and after nonchelated (EVP1001-1 or MnCl2 (22 μmol/kg)) or chelated (mangafodipir (22–44 μmol/kg)) manganese-based contrast media in the presence of calcium channel blockade (diltiazem (100–200 μmol/kg/min)) or sodium chloride (0.9%). A second cohort of rats underwent surgery to induce anterior myocardial infarction by permanent coronary artery ligation or sham surgery. Infarcted rats were imaged with standard gadolinium delayed enhancement MRI (DEMRI) with inversion recovery techniques (DEMRI inversion recovery) as well as DEMRI T1 mapping. A subsequent MEMRI scan was performed 48 h later using either nonchelated or chelated manganese and T1 mapping. Finally, animals were culled at 12 weeks, and infarct size was quantified histologically with Masson’s trichrome (MTC). Results. Both manganese agents induced concentration-dependent shortening of myocardial T1 values. This was greatest with nonchelated manganese, and could be inhibited by 30–43% with calcium-channel blockade. Manganese imaging successfully delineated the area of myocardial infarction. Indeed, irrespective of the manganese agent, there was good agreement between infarct size on MEMRI T1 mapping and histology (bias 1.4%, 95% CI −14.8 to 17.1 P&gt;0.05). In contrast, DEMRI inversion recovery overestimated infarct size (bias 11.4%, 95% CI −9.1 to 31.8 P=0.002), as did DEMRI T1 mapping (bias 8.2%, 95% CI −10.7 to 27.2 P=0.008). Increased manganese uptake was also observed in the remote myocardium, with remote myocardial ∆T1 inversely correlating with left ventricular ejection fraction after myocardial infarction (r=−0.61, P=0.022). Conclusions. MEMRI causes concentration and calcium channel-dependent myocardial T1 shortening. MEMRI with T1 mapping provides an accurate assessment of infarct size and can also identify changes in calcium handling in the remote myocardium. This technique has potential applications for the assessment of myocardial viability, remodelling, and regeneration.</jats:p

    Differential impact of LPG-and PG-deficient Leishmania major mutants on the immune response of human dendritic cells

    Get PDF
    <div><p>Background</p><p><i>Leishmania major</i> infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of <i>Leishmania</i> parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction.</p><p>Methodology/Principal Findings</p><p>Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating <i>L</i>. <i>major</i> Friedlin V1 mutants defective in LPG alone, (FV1 <i>lpg1-</i>), or generally deficient for all PGs, (FV1 <i>lpg2-</i>). Infection with metacyclic, infective stage, <i>L</i>. <i>major</i> or purified LPG induced high levels of <i>IL12B</i> subunit gene transcripts in hDCs, which was abrogated with FV1 <i>lpg1-</i> infections. In contrast, hDC infections with FV1 <i>lpg2-</i> displayed increased <i>IL12B</i> expression, suggesting other PG-related/<i>LPG2</i> dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 <i>lpg1-</i>, FV1 <i>lpg2-</i> infections revealed that FV1 <i>lpg1-</i> mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription.</p><p>Conclusions/Significance</p><p>These data suggest that <i>L</i>. <i>major</i> LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring <i>Leishmania</i> surface glycoconjugates that result in modulation of host cellular IL12.</p></div

    Modeling the interactions between river morphodynamics and riparian vegetation

    Get PDF
    The study of river-riparian vegetation interactions is an important and intriguing research field in geophysics. Vegetation is an active element of the ecological dynamics of a floodplain which interacts with the fluvial processes and affects the flow field, sediment transport, and the morphology of the river. In turn, the river provides water, sediments, nutrients, and seeds to the nearby riparian vegetation, depending on the hydrological, hydraulic, and geomorphological characteristic of the stream. In the past, the study of this complex theme was approached in two different ways. On the one hand, the subject was faced from a mainly qualitative point of view by ecologists and biogeographers. Riparian vegetation dynamics and its spatial patterns have been described and demonstrated in detail, and the key role of several fluvial processes has been shown, but no mathematical models have been proposed. On the other hand, the quantitative approach to fluvial processes, which is typical of engineers, has led to the development of several morphodynamic models. However, the biological aspect has usually been neglected, and vegetation has only been considered as a static element. In recent years, different scientific communities (ranging from ecologists to biogeographers and from geomorphologists to hydrologists and fluvial engineers) have begun to collaborate and have proposed both semiquantitative and quantitative models of river-vegetation interconnections. These models demonstrate the importance of linking fluvial morphodynamics and riparian vegetation dynamics to understand the key processes that regulate a riparian environment in order to foresee the impact of anthropogenic actions and to carefully manage and rehabilitate riparian areas. In the first part of this work, we review the main interactions between rivers and riparian vegetation, and their possible modeling. In the second part, we discuss the semiquantitative and quantitative models which have been proposed to date, considering both multi- and single-thread river
    corecore