116 research outputs found

    Indigenous transnational visibilities and identities in Oceania : establishing alternative geographies across boundaries

    Full text link
    Pendant la deuxiĂšme moitiĂ© du vingtiĂšme siĂšcle, les rĂ©gions du Pacifique, et notamment l’Australie et la Nouvelle-ZĂ©lande, ont vu augmenter les mouvements de migrations. Ces derniers ont permis une diversification des concepts de nationalitĂ©, d’identitĂ©, de langage et d’espace. De ce fait, bon nombre d’auteurs ont donc dĂ©cidĂ© d’approcher leurs Ă©crits Ă  travers le spectre du transnationalisme et ont cherchĂ© Ă  repousser les limites culturelles et les frontiĂšres gĂ©ographiques -imposĂ©es par un Ă©tat colonial.- Par consĂ©quent, c’est avec une approche comparative que j’analyserai, en tenant ainsi compte de la constante Ă©volution des nouveaux cadres gĂ©ographiques et culturels, le recueil de poĂšmes Star Waka (1999) de l’auteur maori Robert Sullivan, le roman graphique Night Fisher (2005) de l’artiste hawaiien R. Kikuo Johnson et le roman Carpentaria de l’autrice waanyi Alexis Wright. En effet, j’examinerai la formation des identitĂ©s autochtones en lien avec le lieu natal respectif de chaque auteur tout en tenant compte de l’évolution de la notion de frontiĂšre, qu’elle soit locale ou nationale. En se dĂ©tournant de la perspective coloniale, je mettrai ainsi en lumiĂšre les diffĂ©rents outils que les auteurs utilisent dans leurs oeuvres pour permettre de dĂ©finir une ou plusieurs identitĂ©(s) autochtone(s) qui se lisent entre les lignes et au-delĂ  des limites spatiales. La question de l’enracinement et du dĂ©placement est au coeur de ce rĂ©seau d’alliances autochtones, et permet une approche et une lecture transnationales, ainsi qu’une vision d’un monde littĂ©raire commun et partagĂ©. Ce rĂ©seau va au-delĂ  des frontiĂšres locales et nationales, crĂ©ant ainsi des gĂ©ographies alternatives.The second part of the twentieth century saw movements of migration increased, notably in Australia, New Zealand, and the Pacific regions, resulting in a diversification of the concepts of nationhood, identity, language, and space. As such, many authors have worked through the lens of transnationalism and have sought to think beyond the concept of borders, since locality is ultimately attached to a specific identity. Thus, to account for shifting geographical and cultural frameworks, I aim to paint a cross-cultural comparison within different genres of Indigenous literatures in Oceania. Through an analysis of Robert T. Sullivan’s Star Waka (1999), R. Kikuo Johnson’s Night Fisher (2005), and Alexis Wright’s Carpentaria (2006), I examine the formation of Indigenous identities in relation to the authors’ respective homelands while also interacting with the changing concepts of local and national boundaries. By decentering the Western definition of the border I highlight the way in which these authors can be read through the semantic lines of their works as well as across geographical borders, thereby challenging the dichotomy between the local and the global by disorientating and regenerating creative Indigenous identities on a larger scale. As the twenty-first century engages with new sorts of narratives, the issue of rootedness and displacement within a network of Indigenous alliances allows for a comparative and transnational approach, and a vision of a shared literary world that crosses over local and national boundaries, thereby enabling alternative geographies and accounting for contrasting perceptions of the world

    GATA4-Twist1 signalling in disturbed flow-induced atherosclerosis

    Get PDF
    BACKGROUND: Endothelial cell (EC) dysfunction (enhanced inflammation, proliferation and permeability) is the initial trigger for atherosclerosis. Atherosclerosis shows preferential development near branches and bends exposed to disturbed blood flow. By contrast, sites that are exposed to non-disturbed blood flow are atheroprotected. Disturbed flow promotes atherosclerosis by promoting EC dysfunction. Blood flow controls EC function through transcriptional and post-transcriptional mechanisms that are incompletely understood. METHODS AND RESULTS: We identified the developmental transcription factors Twist1 and GATA4 as being enriched in EC at disturbed flow, atheroprone regions of the porcine aorta in a microarray study. Further work using the porcine and murine aortae demonstrated that Twist1 and GATA4 expression was enhanced at the atheroprone, disturbed flow sites in vivo. Using controlled in vitro flow systems, the expression of Twist1 and GATA4 was enhanced under disturbed compared to non-disturbed flow in cultured cells. Disturbed flow promoted Twist1 expression through a GATA4-mediated transcriptional mechanism as revealed by a series of in vivo and in vitro studies. GATA4-Twist1 signalling promoted EC proliferation, inflammation, permeability and endothelial-to-mesenchymal transition (EndoMT) under disturbed flow, leading to atherosclerosis development, as shown in a combination of in vitro and in vivo studies using GATA4 and Twist1-specific siRNA and EC-specific GATA4 and Twist1 Knock out (KO) mice. CONCLUSIONS: We revealed that GATA4-Twist1-Snail signalling triggers EC dysfunction and atherosclerosis; this work could lead to the development of novel anti-atherosclerosis therapeutics

    Assessment of ferroptosis inducers and Nrf2 inhibitors as radiosensitisers in 2D and 3D breast cancer cell cultures

    Get PDF
    Ferroptosis is a form of programmed cell death that is modulated in some cancer cells as a pro-survival mechanism. Induction of ferroptosis is a potential anti-cancer strategy, and enhancement of ferroptosis using ferroptosis inducers has the potential to enhance current anti-tumour mechanisms. In this study, we assessed the effect of the ferroptosis inducers Erastin, RSL-3 and FIN-56 on radiosensitivity in 2D cell culture, and in 3D alginate tumour spheroids from breast cancer cell lines. Since some tumours modulate ferroptosis via increased Nrf2 production, and MCF-7 and MDA-MB-231 both produce Nrf2 protein, we also assessed the effects of the Nrf2 inhibitor ML385 on radiosensitivity. MDA-MB-231 was highly sensitive to all ferroptosis inducers, and ferroptosis was reversed by the ferroptosis inhibitors Ferrostatin-1, Liproxstatin-1 and Deferoxamine. MCF-7 was resistant to all ferroptosis inducers. MDA-MB-231 and MCF-7 cells were sensitive to irradiation in 2D cell culture but resistant to irradiation in 3D alginate spheroids. Ferroptosis inducers did not synergistically enhance irradiation-induced cell death in 2D cell cultures. There was also no robust enhancement to irradiation effects with ferroptosis inducers in 2D or 3D cell culture. Ferroptosis inducers did, however, show a heterogeneous response in 3D cell culture, in that isogenic spheroids responded differently within the same spheroid. The Nrf2 inhibitor ML385 showed no synergistic enhancement of ferroptotic cell death when combined with irradiation. These studies suggest targeting ferroptosis does not induce short-term enhancement of ferroptotic cell death

    Notch signalling influences cell fate decisions and HOX gene induction in axial progenitors

    Get PDF
    The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are critical for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. While the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative feedback loop with FGF signalling.</p

    Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture

    Get PDF
    During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation

    Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites

    Get PDF
    OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-ÎșB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-ÎșB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes

    Analysis of <i>Runx1</i> Using Induced Gene Ablation Reveals Its Essential Role in Pre-liver HSC Development and Limitations of an <i>In Vivo</i> Approach

    Get PDF
    Summary: Hematopoietic stem cells (HSCs) develop in the embryonic aorta-gonad-mesonephros (AGM) region and subsequently relocate to fetal liver. Runx1 transcription factor is essential for HSC development, but is largely dispensable for adult HSCs. Here, we studied tamoxifen-inducible Runx1 inactivation in vivo. Induction at pre-liver stages (up to embryonic day 10.5) reduced erythromyeloid progenitor numbers, but surprisingly did not block the appearance of Runx1-null HSCs in liver. By contrast, ex vivo analysis showed an absolute Runx1 dependency of HSC development in the AGM region. We found that, contrary to current beliefs, significant Cre-inducing tamoxifen activity persists in mouse blood for at least 72 hr after injection. This deferred recombination can hit healthy HSCs, which escaped early Runx1 ablation and result in appearance of Runx1-null HSCs in liver. Such extended recombination activity in vivo is a potential source of misinterpretation, particularly in analysis of dynamic developmental processes during embryogenesis. : The authors found that Cre-mediated Runx1 ablation induced in vivo at pre-liver stages resulted in appearance of Runx1-null HSCs in the fetal liver. By contrast, deletion of Runx1 in cultured AGM region fully blocked HSC development. Appearance of Runx1-null HSCs in the liver is explained by presence of uncontrolled long-lasting (at least 3 days) Cre-inducing tamoxifen activity in vivo. Keywords: Runx1, hematopoietic stem cells, AGM, development, hematopoiesis, conditional knockout, tamoxife

    A molecular roadmap of the AGM region reveals BMP ER as a novel regulator of HSC maturation

    Get PDF
    In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMP ER as a novel positive regulator of HSC development. We demonstrate that BMP ER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMP ER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.Peer reviewe

    Zebrafish Model for Functional Screening of Flow-Responsive Genes

    Get PDF
    OBJECTIVE: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. APPROACH AND RESULTS: First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2-like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. CONCLUSIONS: We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites

    Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor

    Get PDF
    The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control
    • 

    corecore