98 research outputs found

    Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections

    Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Get PDF
    17 páginas.- 3 figuras.- 194 referenciasGlobal change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding.Funding information Deutsche Forschungsgemeinschaft, Grant/Award Numbers: DFG– FZT 118, 202548816, 493345801, DFG, FOR 5000, 192626868, 326061700, MO 412/54‐2; DFG, Grant/Award Numbers: Ei 862/29‐1, Ei 862/ 31‐1; GlobNet project, Grant/Award Number: ANR‐16‐CE02‐0009; Investissement d'Avenir, Grant/Award Numbers: Trajectories: ANR‐15‐ IDEX‐02, Montane: OSUG@2020: ANR‐10‐ LAB‐56; Saxon State Ministry for Science, Culture and Tourism (SMWK), Germany, Grant/Award Number: 3‐7304/35/6‐2021/ 48880; sDiv, Grant/Award Number: SFW9.02; ERC‐StG SHIFTFEEDBACK, Grant/Award Number: 851678; European Union's Horizon 2020 research and innovation programme, Grant/Award Numbers: 864287— THRESHOLD—ERC‐2019‐COG, 817946; Swedish Research Council Formas, Grant/Award Number: 2020‐00807; German Federal Environmental Foundation, Grant/Award Number: DBU, 20021/752Peer reviewe

    Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022

    Full text link
    Global change is affecting soil biodiversity and functioning across all terrestrial ecosystems. Still, much is unknown about how soil biodiversity and function will change in the future in response to simultaneous alterations in climate and land use, as well as other environmental drivers. It is crucial to understand the direct, indirect and interactive effects of global change drivers on soil communities and ecosystems across environmental contexts, not only today but also in the near future. This is particularly relevant for international efforts to tackle climate change like the Paris Agreement, and considering the failure to achieve the 2020 biodiversity targets, especially the target of halting soil degradation. Here, we outline the main frontiers related to soil ecology that were presented and discussed at the thematic sessions of the World Biodiversity Forum 2022 in Davos, Switzerland. We highlight multiple frontiers of knowledge associated with data integration, causal inference, soil biodiversity and function scenarios, critical soil biodiversity facets, underrepresented drivers, global collaboration, knowledge application and transdisciplinarity, as well as policy and public communication. These identified research priorities are not only of immediate interest to the scientific community but may also be considered in research priority programmes and calls for funding

    Multiple Facets of Biodiversity Drive the Diversity-Stability Relationship

    Get PDF
    A significant body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity–stability relationship remains unclear. Here we used data from 39 biodiversity experiments and structural equation modeling to investigate the roles of species richness, phylogenetic diversity, and both the diversity and community-weighted mean of functional traits representing the ‘fast–slow’ leaf economics spectrum in driving the diversity–stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony. Contrary to our hypothesis, low phylogenetic diversity also enhances ecosystem stability directly, albeit weakly. While the diversity of fast–slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our results demonstrate that biodiversity influences ecosystem stability via a variety of facets, thus highlighting a more multicausal relationship than has been previously acknowledged

    Mapping local and global variability in plant trait distributions

    Get PDF
    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∌50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≄10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms
    • 

    corecore