1,707 research outputs found

    FPGA based technical solutions for high throughput data processing and encryption for 5G communication: A review

    Get PDF
    The field programmable gate array (FPGA) devices are ideal solutions for high-speed processing applications, given their flexibility, parallel processing capability, and power efficiency. In this review paper, at first, an overview of the key applications of FPGA-based platforms in 5G networks/systems is presented, exploiting the improved performances offered by such devices. FPGA-based implementations of cloud radio access network (C-RAN) accelerators, network function virtualization (NFV)-based network slicers, cognitive radio systems, and multiple input multiple output (MIMO) channel characterizers are the main considered applications that can benefit from the high processing rate, power efficiency and flexibility of FPGAs. Furthermore, the implementations of encryption/decryption algorithms by employing the Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and then we introduce our high-speed and lightweight implementation of the well-known AES-128 algorithm, developed on the same FPGA platform, and comparing it with similar solutions already published in the literature. The comparison results indicate that our AES-128 implementation enables efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, the applications of the ZCU102 platform for high-speed processing are explored, such as image and signal processing, visual recognition, and hardware resource management

    Solar-Powered Deep Learning-Based Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired

    Get PDF
    This paper introduces a novel low-cost solar-powered wearable assistive technology (AT) device, whose aim is to provide continuous, real-time object recognition to ease the finding of the objects for visually impaired (VI) people in daily life. The system consists of three major components: a miniature low-cost camera, a system on module (SoM) computing unit, and an ultrasonic sensor. The first is worn on the user’s eyeglasses and acquires real-time video of the nearby space. The second is worn as a belt and runs deep learning-based methods and spatial algorithms which process the video coming from the camera performing objects’ detection and recognition. The third assists on positioning the objects found in the surrounding space. The developed device provides audible descriptive sentences as feedback to the user involving the objects recognized and their position referenced to the user gaze. After a proper power consumption analysis, a wearable solar harvesting system, integrated with the developed AT device, has been designed and tested to extend the energy autonomy in the dierent operating modes and scenarios. Experimental results obtained with the developed low-cost AT device have demonstrated an accurate and reliable real-time object identification with an 86% correct recognition rate and 215 ms average time interval (in case of high-speed SoM operating mode) for the image processing. The proposed system is capable of recognizing the 91 objects oered by the Microsoft Common Objects in Context (COCO) dataset plus several custom objects and human faces. In addition, a simple and scalable methodology for using image datasets and training of Convolutional Neural Networks (CNNs) is introduced to add objects to the system and increase its repertory. It is also demonstrated that comprehensive trainings involving 100 images per targeted object achieve 89% recognition rates, while fast trainings with only 12 images achieve acceptable recognition rates of 55%

    Synthesis of Poly[(3-(6-(9-anthracenylmethoxy)hexyl)thiophene)-co-(3-(6-bromohexyl)thiophene)] Postfunctionalized from Poly(3-(6-bromohexyl)thiophene): A Comparative Study of the Base Polymer with Its Chlorinated Analogous

    Get PDF
    A synthetic method based on the postfunctionalization of a reactive homopolymer precursor, which allows for the preparation of different copolymers derived from poly(3-alkylthiophene), was studied. Although these groups decrease the solubility of the resultant material, they enable controlling the degree of substitution to obtain a material with improved spectroscopic (absorption and emission) properties making them useful for the fabrication of electronic devices, for example, solar cells and light-emitting diodes. Furthermore, a comparative study of two halogenated (Cl and Br) reactive poly(3-ω-haloalkyl)thiophenes was carried out

    Wind Turbine Tip Vortices under the influence of Wind Tunnel Blockage Effects

    Get PDF
    The current paper describes the characteristics of the tip vortex in the near wake of a three-bladed upwind horizontal axis wind turbine with a rotor diameter of 3 m. Phase-locked stereo particle image velocimetry measurements were carried out under the influence of the wind tunnel walls that create a high blockage ratio. The location of the vortex, convection velocity, core radius, and strength were investigated and compared with similar investigations, including different blockages cases. Additionally, the same performance of the wind turbine model was simulated in the open source wind turbine tool QBlade, using the lifting line free vortex wake module in the absence of the walls. The results showed that the location of the tip vortices was more inboard the tip and more downstream the tunnel compared to the simulations and similar experiments. The convection velocity remained similar in the axial direction and changed in the lateral direction, contributing to the delay of the movement of the tip vortex outboard the tip. The strength, based on the circulation, was found with a difference of 4% between simulation and experiment

    Determination of the angle of attack on a research wind turbine rotor blade using surface pressure measurements

    Get PDF
    In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach used a reduced number of pressure tap data located close to the blade leading edge. The results were compared with the measurements from three external probes mounted on the blade at different radial positions and with analytical calculations. Both experimental approaches used in this study are based on the 2-D flow assumption; the pressure tap method is an application of the thin airfoil theory, while the probe method applies geometrical and induction corrections to the measurement data. The experiments were conducted in the wind tunnel at the Hermann Föttinger Institut of the Technische Universität Berlin. The research turbine is a three-bladed upwind horizontal axis wind turbine model with a rotor diameter of 3 m. The measurements were carried out at rated conditions with a tip speed ratio of 4.35 and different yaw and pitch angles were tested in order to compare the approaches over a wide range of conditions. Results show that the pressure tap method is suitable and provides a similar angle of attack to the external probe measurements as well as the analytical calculations. This is a significant step for the experimental determination of the local angle of attack, as it eliminates the need for external probes, which affect the flow over the blade and require additional calibration

    The afterglow and host galaxy of GRB 090205: evidence for a Ly-alpha emitter at z=4.65

    Get PDF
    Gamma-ray bursts have been proved to be detectable up to distances much larger than any other astrophysical object, providing the most effective way, complementary to ordinary surveys, to study the high redshift universe. To this end, we present here the results of an observational campaign devoted to the study of the high-z GRB 090205. We carried out optical/NIR spectroscopy and imaging of GRB 090205 with the ESO-VLT starting from hours after the event up to several days later to detect the host galaxy. We compared the results obtained from our optical/NIR observations with the available Swift high-energy data of this burst. Our observational campaign led to the detection of the optical afterglow and host galaxy of GRB 090205 and to the first measure of its redshift, z=4.65. Similar to other, recent high-z GRBs, GRB 090205 has a short duration in the rest-frame with T_{90,rf}=1.6 s, which suggests the possibility that it might belong to the short GRBs class. The X-ray afterglow of GRB 090205 shows a complex and interesting behaviour with a possible rebrightening at 500-1000s from the trigger time and late flaring activity. Photometric observations of the GRB 090205 host galaxy argue in favor of a starburst galaxy with a stellar population younger than ~ 150 Myr. Moreover, the metallicity of Z > 0.27 Z_Sun derived from the GRB afterglow spectrum is among the highest derived from GRB afterglow measurement at high-z, suggesting that the burst occurred in a rather enriched envirorment. Finally, a detailed analysis of the afterglow spectrum shows the existence of a line corresponding to Lyman-alpha emission at the redshift of the burst. GRB 090205 is thus hosted in a typical Lyman-alpha emitter (LAE) at z=4.65. This makes the GRB 090205 host the farthest GRB host galaxy, spectroscopically confirmed, detected to date.Comment: Accepted for publication in Astronomy and Astrophysics; 8 pages, 7 figure

    Use of Bibliometric Analysis to Assess the Scientific Productivity and Impact of the Global Emerging Infections Surveillance and Response System Program, 2006-2012.

    Get PDF
    BACKGROUND: Scientific publication in academic literature is a key venue in which the U.S. Department of Defense's Global Emerging Infections Surveillance and Response System (GEIS) program disseminates infectious disease surveillance data. Bibliometric analyses are tools to evaluate scientific productivity and impact of published research, yet are not routinely used for disease surveillance. Our objective was to incorporate bibliometric indicators to measure scientific productivity and impact of GEIS-funded infectious disease surveillance, and assess their utility in the management of the GEIS surveillance program. METHODS: Metrics on GEIS program scientific publications, project funding, and countries of collaborating institutions from project years 2006 to 2012 were abstracted from annual reports and program databases and organized by the six surveillance priority focus areas: respiratory infections, gastrointestinal infections, febrile and vector-borne infections, antimicrobial resistance, sexually transmitted infections, and capacity building and outbreak response. Scientific productivity was defined as the number of scientific publications in peer-reviewed literature derived from GEIS-funded projects. Impact was defined as the number of citations of a GEIS-funded publication by other peer-reviewed publications, and the Thomson Reuters 2-year journal impact factor. Indicators were retrieved from the Web of Science and Journal Citation Report. To determine the global network of international collaborations between GEIS partners, countries were organized by the locations of collaborating institutions. RESULTS: Between 2006 and 2012, GEIS distributed approximately US 330milliontosupport921totalprojects.Onaverage,GEISfunded132projects(range96160)with330 million to support 921 total projects. On average, GEIS funded 132 projects (range 96-160) with 47 million (range 43million43 million-53 million), annually. The predominant surveillance focus areas were respiratory infections with 317 (34.4%) projects and 225million,andfebrileandvectorborneinfectionswith274(29.8225 million, and febrile and vector-borne infections with 274 (29.8%) projects and 45 million. The number of annual respiratory infections-related projects peaked in 2006 and 2009. The number of febrile and vector-borne infections projects increased from 29 projects in 2006 to 58 in 2012. There were 651 articles published in 147 different peer-reviewed journals, with an average Thomson Reuters 2-year journal impact factor of 4.2 (range 0.3-53.5). On average, 93 articles were published per year (range 67-117) with $510,000 per publication. Febrile and vector-borne, respiratory, and gastrointestinal infections had 287, 167, and 73 articles published, respectively. Of the 651 articles published, 585 (89.9%) articles were cited at least once (range 1-1,045). Institutions from 90 countries located in all six World Health Organization regions collaborated with surveillance projects. CONCLUSIONS: These findings summarize the GEIS-funded surveillance portfolio between 2006 and 2012, and demonstrate the scientific productivity and impact of the program in each of the six disease surveillance priority focus areas. GEIS might benefit from further financial investment in both the febrile and vector-borne and sexually transmitted infections surveillance priority focus areas and increasing peer-reviewed publications of surveillance data derived from respiratory infections projects. Bibliometric indicators are useful to measure scientific productivity and impact in surveillance systems; and this methodology can be utilized as a management tool to assess future changes to GEIS surveillance priorities. Additional metrics should be developed when peer-reviewed literature is not used to disseminate noteworthy accomplishments

    GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang

    Full text link
    We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050904 is consistent with the Amati and Ghirlanda relations. This detection is consistent with the expected number of GRBs at z > 6 and shows that GRBs are a powerful tool to study the star formation history up to very high redshift.Comment: 3 figures, 5 pages, accepted for publication in A&A Letters. One figure added, minor modifications. Full author list in the pape

    Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine

    Get PDF
    This paper investigates the aerodynamic impact of Gurney flaps on a research wind turbine of the Hermann-Föttinger Institute at the Technische Universität Berlin. The rotor radius is 1.5 m, and the blade configurations consist of the clean and the tripped baseline cases, emulating the effects of forced leading-edge transition. The wind tunnel experiments include three operation points based on tip speed ratios of 3.0, 4.3, and 5.6, reaching Reynolds numbers of approximately 2.5×105. The measurements are taken by means of three different methods: Ultrasonic anemometry in the wake, surface pressure taps in the midspan blade region, and strain gauges at the blade root. The retrofit applications consist of two Gurney flap heights of 0.5% and 1.0% in relation to the chord length, which are implemented perpendicular to the pressure side at the trailing edge. As a result, the Gurney flap configurations lead to performance improvements in terms of the axial wake velocities, the angles of attack and the lift coefficients. The enhancement of the root bending moments implies an increase in both the rotor torque and the thrust. Furthermore, the aerodynamic impact appears to be more pronounced in the tripped case compared to the clean case. Gurney flaps are considered a passive flow-control device worth investigating for the use on horizontal-axis wind turbines
    corecore