10 research outputs found

    Research priorities for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): the results of a James Lind alliance priority setting exercise

    Get PDF
    Objective: To identify research priorities of people with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) and those who support and care for them. Method: Using the James Lind Alliance’s protocols, online surveys and workshops were held. The first survey asked participants from the U.K. to submit research questions about ME/CFS which were important to them. In the second, participants prioritised frequently submitted questions from the 1st survey. These were short listed and then workshop discussions were held to reach consensus on the top ten research priorities. Results: 1565 participated in the 1st survey and 5300 research priorities were submitted. 1752 participated in the 2nd. In both surveys, the predominant demographic was white, middle-aged women with ME/CFS. 15–17% were family/carers of people with ME/CFS and 4–6% were health and social care workers. From the 1st survey, 59 summary questions were identified. These were prioritised and short listed to 18 questions. Of these, the top 10 covered 1. Post-exertional malaise, 2. Use of existing drugs for other conditions, 3. Diagnosis, 4. Autoimmunity, 5. Sub-types, 6. Post-infective cause, 7. Neurological symptomology, 8. Genetics, 9. Severe ME/CFS, 10. Mitochronical dysfunction and 10 (equal) Oxygenation dysfunction. Conclusion: People with ME/CFS, their families and carers, and health care professionals worked together to identify, for the first time, the research priorities for ME/CFS. These focus on the biomedical causes of ME/CFS and how to diagnose, treat and manage it. Researchers and funding bodies should consider these in their plans for future research

    Typing myalgic encephalomyelitis by infection at onset: A DecodeME study [version 4; peer review: 2 approved]

    Get PDF
    Background: People with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) experience core symptoms of post-exertional malaise, unrefreshing sleep, and cognitive impairment. Despite numbering 0.2-0.4% of the population, no laboratory test is available for their diagnosis, no effective therapy exists for their treatment, and no scientific breakthrough regarding pathogenesis has been made. It remains unknown, despite decades of small-scale studies, whether individuals experience different types of ME/CFS separated by onset-type, sex or age. Methods: DecodeME is a large population-based study of ME/CFS that recruited 17,074 participants in the first 3 months following full launch. Detailed questionnaire responses from UK-based participants who all reported being diagnosed with ME/CFS by a health professional provided an unparalleled opportunity to investigate, using logistic regression, whether ME/CFS severity or onset type is significantly associated with sex, age, illness duration, comorbid conditions or symptoms. Results: The well-established sex-bias among ME/CFS patients is evident in the initial DecodeME cohort: 83.5% of participants were females. What was not known previously was that females tend to have more comorbidities than males. Moreover, being female, being older and being over 10 years from ME/CFS onset are significantly associated with greater severity.  Five different ME/CFS onset types were examined in the self-reported data: those with ME/CFS onset (i) after glandular fever (infectious mononucleosis); (ii) after COVID-19 infection; (iii) after other infections; (iv) without an infection at onset; and, (v) where the occurrence of an infection at or preceding onset is not known. Among other findings, ME/CFS onset with unknown infection status was significantly associated with active fibromyalgia. Conclusions: DecodeME participants differ in symptoms, comorbid conditions and/or illness severity when stratified by their sex-at-birth and/or infection around the time of ME/CFS onset

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    DecodeME: Community recruitment for a large genetics study of myalgic encephalomyelitis / chronic fatigue syndrome

    Get PDF
    BACKGROUND: Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a common, long-term condition characterised by post-exertional malaise, often with fatigue that is not significantly relieved by rest. ME/CFS has no confirmed diagnostic test or effective treatment and we lack knowledge of its causes. Identification of genes and cellular processes whose disruption adds to ME/CFS risk is a necessary first step towards development of effective therapy. METHODS: Here we describe DecodeME, an ongoing study co-produced by people with lived experience of ME/CFS and scientists. Together we designed the study and obtained funding and are now recruiting up to 25,000 people in the UK with a clinical diagnosis of ME/CFS. Those eligible for the study are at least 16 years old, pass international study criteria, and lack any alternative diagnoses that can result in chronic fatigue. These will include 5,000 people whose ME/CFS diagnosis was a consequence of SARS-CoV-2 infection. Questionnaires are completed online or on paper. Participants’ saliva DNA samples are acquired by post, which improves participation by more severely-affected individuals. Digital marketing and social media approaches resulted in 29,000 people with ME/CFS in the UK pre-registering their interest in participating. We will perform a genome-wide association study, comparing participants’ genotypes with those from UK Biobank as controls. This should generate hypotheses regarding the genes, mechanisms and cell types contributing to ME/CFS disease aetiology. DISCUSSION: The DecodeME study has been reviewed and given a favourable opinion by the North West – Liverpool Central Research Ethics Committee (21/NW/0169). Relevant documents will be available online (www.decodeme.org.uk). Genetic data will be disseminated as associated variants and genomic intervals, and as summary statistics. Results will be reported on the DecodeME website and via open access publications
    corecore