9 research outputs found

    Expression of the MexXY-OprM efflux system in Pseudomonas aeruginosa with discordant cefepime/ceftazidime susceptibility profiles

    Get PDF
    While MIC distributions and percent susceptibility for cefepime and ceftazidime are generally similar among Pseudomonas aeruginosa, we noted an increasing discordance in susceptibility favoring ceftazidime at our hospital. Quantitative reverse transcriptase-polymerase chain reaction was utilized to explore overexpression of the MexXY-OprM efflux as the mechanism for this phenotype profile. Thirteen of 15 (87%) randomly selected isolates had mexY gene expression levels of 5.8–40.8-fold relative to the wild-type reference strain. While mexY overexpression was noted in the majority of isolates, other resistance mechanisms appear to contribute to the observed phenotypic profile of the Pseudomonas aeruginosa studied. Clinicians must understand not only the magnitude of difference in the MIC profiles between agents, but also the mechanism(s) responsible for these observations if strategies (ie, pharmacodynamic dosing) are to be designed to optimize patient care outcomes in the face of increasing resistance

    Identifying Exposure Targets for Treatment of Staphylococcal Pneumonia with Ceftobiprole▿

    No full text
    Ceftobiprole is a cephalosporin with potent activity against methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). In order to treat patients with severe staphylococcal pneumonia, it is important to understand the drug exposure required to mediate the killing of multiple log10 cells in a preclinical-infection model. We measured drug exposure in terms of the percentage of penetration of the drug into epithelial lining fluid (ELF) and in terms of the time for which the drug concentration was above the MIC (time>MIC) in plasma and ELF. In a murine model of staphylococcal pneumonia, we demonstrated that ceftobiprole penetrated into ELF from the plasma at a median level of nearly 69% (25th to 75th percentile range, 25 to 187%), as indexed to the ratio of values for the area under the concentration-time curve in ELF and plasma. The total-drug times>MIC in ELF that were required to kill 1 log10 and 2 log10 CFU/g of lung tissue were 15% and 25% of the dosing interval. We also examined the penetration of ELF by ceftobiprole in volunteers, demonstrating mean and median penetration percentages of 25.5% and 15.3%, respectively (25th to 75th percentile range, 8 to 30%). Attainment rates were calculated for kill targets of 1 log10 and 2 log10 CFU/g, taken from the murine model, but using the volunteer ceftobiprole ELF penetration data. The standard dose for ceftobiprole is 0.5 g every 8 h as a 2-h infusion. The attainment rates remained above 90% for 1-log10 and 2-log10 CFU/g kill targets at MICs of 1 and 0.5 mg/liter, respectively. Taking the expectation over the distribution of ceftobiprole MICs for 4,958 MRSA isolates showed an overall target attainment of 85.6% for a 1-log10 CFU/g kill and 79.7% for a 2-log10 CFU/g kill. It is important to derive exposure targets in preclinical-infection models of the infection site so that these targets can be explored in clinical trials in order to optimize the probability of a good clinical outcome

    Coping With Stigma in the Workplace: Understanding the Role of Threat Regulation, Supportive Factors, and Potential Hidden Costs

    No full text
    corecore