2,572 research outputs found

    Systematic generation of finite-range atomic basis sets for linear-scaling calculations

    Full text link
    Basis sets of atomic orbitals are very efficient for density functional calculations but lack a systematic variational convergence. We present a variational method to optimize numerical atomic orbitals using a single parameter to control their range. The efficiency of the basis generation scheme is tested and compared with other schemes for multiple zeta basis sets. The scheme shows to be comparable in quality to other widely used schemes albeit offering better performance for linear-scaling computations

    Suspended silicon integrated platform for the long-wavelength mid-infrared band

    Get PDF
    The atmospheric-transmission window and the fingerprint region of many substances overlaps with the long-wave infrared band. This has enabled the emergence of a new path for photonic integrated circuits, which could exploit the potential applications of this wavelength range, including chemical and bio sensing. In this work we review our latest advances in the suspended silicon platform with subwavelength grating lateral cladding at 7.7-”m wavelength. Suspended waveguides only require one lithographic etch step and can be specifically designed to maximize sensitivity when used as sensors. Waveguides with propagation loss of 3.1±0.3 dB/cm are demonstrated, as well as bends with less than 0.1 dB/bend. Suspended waveguides based on shifted Bragg grating lateral cladding are also reported, with propagation loss of 5.1±0.6 dB/cm. These results prepare the ground for the development of a platform capable of covering the entire mid-infrared band. Keywords: suspended silicon, mid-infrared, long-wave infrared, subwavelength grating, Bragg.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    Surface roughness-induced speed increase for active Janus micromotors

    Get PDF
    We demonstrate a simple physical fabrication method to control surface roughness of Janus micromotors and fabricate self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.Postprint (published version

    Density distributions, magnetic field structures and fragmentation in high-mass star formation

    Full text link
    Methods: Observing the large pc-scale Stokes I mm dust continuum emission with the IRAM 30m telescope and the intermediate-scale (<0.1pc) polarized submm dust emission with the Submillimeter Array toward a sample of 20 high-mass star-forming regions allows us to quantify the dependence of the fragmentation behaviour of these regions depending on the density and magnetic field structures. Results: We infer density distributions n~r^{-p} of the regions with typical power-law slopes p around ~1.5. There is no obvious correlation between the power-law slopes of the density structures on larger clump scales (~1pc) and the number of fragments on smaller core scales (<0.1pc). Comparing the large-scale single-dish density profiles to those derived earlier from interferometric observations at smaller spatial scales, we find that the smaller-scale power-law slopes are steeper, typically around ~2.0. The flattening toward larger scales is consistent with the star-forming regions being embedded in larger cloud structures that do not decrease in density away from a particular core. Regarding the magnetic field, for several regions it appears aligned with filamentary structures leading toward the densest central cores. Furthermore, we find different polarization structures with some regions exhibiting central polarization holes whereas other regions show polarized emission also toward the central peak positions. Nevertheless, the polarized intensities are inversely related to the Stokes I intensities. We estimate magnetic field strengths between ~0.2 and ~4.5mG, and we find no clear correlation between magnetic field strength and the fragmentation level of the regions. Comparison of the turbulent to magnetic energies shows that they are of roughly equal importance in this sample. The mass-to-flux ratios range between ~2 and ~7, consistent with collapsing star-forming regions.Comment: Accepted for Astronomy & Astrophysics, 14 pages, 14 figures plus appendices, also download option at https://www2.mpia-hd.mpg.de/homes/beuther/papers.htm

    Electron transport through monovalent atomic wires

    Get PDF
    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains and their phase is opposite to that of noble-metal chainsPeer reviewe

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Study of J /ψ production in Jets

    Get PDF
    The production of J/ψ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/ψ meson, z(J/ψ)≡pT(J/ψ)/pT(jet), is measured using jets with pT(jet)>20 GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/ψ)distribution for J/ψ mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/ψ production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the pT fraction carried by prompt J/ψ mesons in jets at any experiment
    • 

    corecore