96 research outputs found

    Australian approaches for managing ‘country’ using Indigenous and non-Indigenous knowledge

    Get PDF
    This paper synthesises the lessons learnt and challenges encountered when applying Indigenous and non-Indigenous knowledge and methods in natural and cultural resource management (NCRM) in northern and central Australia. We primarily draw on the papers within this special issue of Ecological Management & Restoration, which originated largely from the Indigenous land management symposium at the 2010 Ecological Society of Australia conference. Many of the papers and therefore this article discuss practical experiences that offer insight for enhanced on-ground cross-cultural NCRM and can inform broader thinking and theoretical critiques. A wider literature is also drawn upon to substantiate the points and broaden the scope of the synthesis. Four key themes for consideration in collaborative cross-cultural NCRM are discussed. They are as follows: 1. The differences in environmental philosophy between Indigenous and non-Indigenous cultures which profoundly shape perceptions of environmental management; 2. Cross-cultural awareness of Indigenous and non-Indigenous knowledge and methods; 3. The mechanics of two-way approaches to ecological research and managing country (NCRM as perceived by Indigenous people) and 4. Operational challenges for Indigenous NCRM organisations. To conclude, we point out five broad principles for managing country using Indigenous and non-Indigenous knowledge: (i) Recognise the validity of both Indigenous and non-Indigenous environmental philosophies; (ii) Create more opportunities for improved cross-cultural understanding, respect and collaborations; (iii) Involve Indigenous people and their knowledge and interests at all stages of the Indigenous NCRM project or research (including planning, design, implementation, communication and evaluation); (iv) Ensure that time and continuity of effort and resources are available (to undertake participatory processes and for trust-building and innovation) and (v) Establish high-level political support through legal and policy frameworks to maintain continuity of government commitment to Indigenous NCRM

    A Pipeline Strategy for Grain Crop Domestication

    Get PDF
    In the interest of diversifying the global food system, improving human nutrition, and making agriculture more sustainable, there have been many proposals to domesticate wild plants or complete the domestication of semidomesticated orphan crops. However, very few new crops have recently been fully domesticated. Many wild plants have traits limiting their production or consumption that could be costly and slow to change. Others may have fortuitous preadaptations that make them easier to develop or feasible as high-value, albeit low-yielding, crops. To increase success in contemporary domestication of new crops, we propose a pipeline approach, with attrition expected as species advance through the pipeline. We list criteria for ranking domestication candidates to help enrich the starting pool with more preadapted, promising species. We also discuss strategies for prioritizing initial research efforts once the candidates have been selected: developing higher value products and services from the crop, increasing yield potential, and focusing on overcoming undesirable traits. Finally, we present new-crop case studies that demonstrate that wild species’ limitations and potential (in agronomic culture, shattering, seed size, harvest, cleaning, hybridization, etc.) are often only revealed during the early phases of domestication. When nearly insurmountable barriers were reached in some species, they have been (at least temporarily) eliminated from the pipeline. Conversely, a few species have moved quickly through the pipeline as hurdles, such as low seed weight or low seed number per head, were rapidly overcome, leading to increased confidence, farmer collaboration, and program expansion.Fil: DeHaan, Lee R.. The Land Institute; Estados UnidosFil: Van Tassel, David L.. The Land Institute; Estados UnidosFil: Anderson, James A.. University of Minnesota; Estados UnidosFil: Asselin, Sean R.. University of Manitoba; CanadĂĄFil: Barnes, Richard. University of Minnesota; Estados UnidosFil: Baute, Gregory J.. University of British Columbia; CanadĂĄFil: Cattani, Douglas J.. University of Manitoba; CanadĂĄFil: Culman, Steve W.. Ohio State University; Estados UnidosFil: Dorn, Kevin M.. University of Minnesota; Estados UnidosFil: Hulke, Brent S.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Kantar, Michael. University of British Columbia; CanadĂĄFil: Larson, Steve. Forage and Range Research Laboratory; Estados UnidosFil: David Marks, M.. University of Minnesota; Estados UnidosFil: Miller, Allison J.. Saint Louis University; Estados UnidosFil: Poland, Jesse. Kansas State University; Estados UnidosFil: Ravetta, DamiĂĄn AndrĂ©s. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Museo PaleontolĂłgico Egidio Feruglio; ArgentinaFil: Rude, Emily. University of Wisconsin; Estados UnidosFil: Ryan, Matthew R.. Cornell University; Estados UnidosFil: Wyse, Don. University of Minnesota; Estados UnidosFil: Zhang, Xiaofei. University of Minnesota; Estados Unido

    High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Altres ajuts: FBBVA research grant (BIOCON_06_106-07)It has been suggested that traditional ecological knowledge (TEK) may play a key role in forest conservation. However, empirical studies assessing to what extent TEK is associated with forest conservation compared with other variables are rare. Furthermore, to our knowledge, the spatial overlap of TEK and forest conservation has not been evaluated at fine scales. In this paper, we address both issues through a case study with Tsimane' Amerindians in the Bolivian Amazon. We sampled 624 households across 59 villages to estimate TEK and used remote sensing data to assess forest conservation. We ran statistical and spatial analyses to evaluate whether TEK was associated and spatially overlapped with forest conservation at the village level. We find that Tsimane' TEK is significantly and positively associated with forest conservation although acculturation variables bear stronger and negative associations with forest conservation. We also find a very significant spatial overlap between levels of Tsimane' TEK and forest conservation. We discuss the potential reasons underpinning our results, which provide insights that may be useful for informing policies in the realms of development, conservation, and climate. We posit that the protection of indigenous cultural systems is vital and urgent to create more effective policies in such realms

    A spatial overview of the global importance of Indigenous lands for conservation

    Get PDF
    Understanding the scale, location and nature conservation values of the lands over which Indigenous Peoples exercise tradi- tional rights is central to implementation of several global conservation and climate agreements. However, spatial information on Indigenous lands has never been aggregated globally. Here, using publicly available geospatial resources, we show that Indigenous Peoples manage or have tenure rights over at least ~38 million km2 in 87 countries or politically distinct areas on all inhabited continents. This represents over a quarter of the world’s land surface, and intersects about 40% of all terrestrial protected areas and ecologically intact landscapes (for example, boreal and tropical primary forests, savannas and marshes). Our results add to growing evidence that recognizing Indigenous Peoples’ rights to land, benefit sharing and institutions is essential to meeting local and global conservation goals. The geospatial analysis presented here indicates that collaborative partnerships involving conservation practitioners, Indigenous Peoples and governments would yield significant benefits for conservation of ecologically valuable landscapes, ecosystems and genes for future generations
    • 

    corecore