1,698 research outputs found

    Solar-insolation-induced changes in the coma morphology of comet 67P/Churyumov-Gerasimenko. Optical monitoring with the Nordic Optical Telescope

    Get PDF
    Context. 67P/Churyumov-Gerasimenko (67P/C-G) is a short-period Jupiter family comet with an orbital period of 6.55 years. Being the target comet of ESA’s Rosetta mission, 67P/C-G has become one of the most intensively studied minor bodies of the Solar System. The Rosetta Orbiter and the Philae Lander have brought us unique information about the structure and activity of the comet nucleus, as well as its activity along the orbit, composition of gas, and dust particles emitted into the coma. However, as Rosetta stayed in very close proximity to the cometary nucleus (less than 500 km with a few short excursions reaching up to 1500 km), it could not see the global picture of a coma at the scales reachable by telescopic observations (103 - 105 km). Aims. In this work we aim to connect in-situ observations made by Rosetta with the morphological evolution of the coma structures monitored by the ground-based observations. In particular, we concentrate on causal relationships between the coma morphology and evolution observed with the Nordic Optical Telescope (NOT) in the Canary Islands, and the seasonal changes of the insolation and the activity of the comet observed by the Rosetta instruments. Methods. Comet 67P/C-G was monitored with the NOT in imaging mode in two colors. Imaging optical observations were performed roughly on a weekly basis, which provides good coverage of short- and long-term variability. With the three dimensional modeling of the coma produced by active regions on the Southern Hemisphere, we aim to qualify the observed morphology by connecting it to the activity observed by Rosetta. Results. During our monitoring program, we detected major changes in the coma morphology of comet 67P/C-G. These were longterm and long-lasting changes. They do not represent any sudden outburst or short transient event, but are connected to seasonal changes of the surface insolation and the emergence of new active regions on the irregular shaped comet nucleus. We have also found significant deviations in morphological changes from the prediction models based on previous apparitions of 67P/C-G, like the time delay of the morphology changes and the reduced activity in the Northern Hemisphere. According to our modeling of coma structures and geometry of observations, the changes are clearly connected with the activity in the Southern Hemisphere observed by the Rosetta spacecraft

    Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2

    Get PDF
    We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-μm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA’s Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet’s antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 10^(28) molecules s^(-1) at perihelion, we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact’s first target, comet 9P/Tempel 1, Hartley 2’s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yr) at its current rate of mass loss

    A Potential Aid in the Target Selection for the Comet Interceptor Mission

    Full text link
    The upcoming Comet Interceptor mission involves a parking phase around the Sun-Earth L2 point before transferring to intercept the orbit of a long period comet, interstellar object or a back-up target in the form of a short-period comet. The target is not certain to be known before the launch in 2029. During the parking phase there may thus arise a scenario wherein a decision needs to be taken of whether to go for a particular comet or whether to discard that option in the hope that a better target will appear within a reasonable time frame later on. We present an expectation value-based formalism that could aid in the associated decision making provided that outlined requirements for its implementation exist.Comment: Accepted for publication in Planetary and Space Scienc

    A Potential Aid in the Target Selection for the Comet Interceptor Mission

    Get PDF
    The upcoming Comet Interceptor mission involves a parking phase around the Sun-Earth L2 point before transferring to intercept the orbit of a long period comet, interstellar object or a back-up target in the form of a short-period comet. The target is not certain to be known before the launch in 2029. During the parking phase there may thus arise a scenario wherein a decision needs to be taken of whether to go for a particular comet or whether to discard that option in the hope that a better target will appear within a reasonable time frame later on. We present an expectation value-based formalism that could aid in the associated decision making provided that outlined requirements for its implementation exist

    Spitzer observations of the asteroid-comet transition object and potential spacecraft target 107P (4015) Wilson-Harrington

    Get PDF
    Context. Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims. Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods. We present mid-infrared photometry in two filters (16 and 22 microns) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM).We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results. We obtain a well constrained beaming parameter (eta = 1.39 +/- 0.26) and obtain a diameter and geometric albedo of D = 3.46 +/- 0.32 km, and pV = 0.059 +/- 0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995), Kraemer et al. (2005) and Reach et al. (2007). Conclusions. The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm^-2s^(-0.5)K^-1 when it is at r=1AU, which is slightly over the limit of 30 Jm^-2s^(-0.5)K-1 derived by Groussin et al. (2009) for the thermal inertia of the nucleus of comet 22P/Kopff.Comment: 4 pages, 1 figure and 3 tables. Paper accepted for publicatio

    Inertial sensor real-time feedback enhances the learning of cervical spine manipulation: a prospective study.

    Get PDF
    BACKGROUND: Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. METHODS: Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. RESULTS: There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). CONCLUSION: Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training

    The effect of absent blood flow on the zebrafish cerebral and trunk vasculature

    Get PDF
    The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow. We find that absent blood flow reduced vascular area and EC number significantly in both examined vascular beds, but the effect is more severe in the cerebral vasculature, and severity increases over time. Absent blood flow leads to an increase in non-EC-specific apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is maintained, intra-cerebral vessels show altered patterning, which is likely to be due to vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and cerebral vasculature, but particularly intra-cerebral vessels are affected by the lack of blood flow, suggesting that responses to blood flow differ between these two vascular beds

    The first observed stellar occultations by the irregular satellite Phoebe (Saturn IX) and improved rotational period

    Get PDF
    peer reviewedWe report six stellar occultations by Phoebe (Saturn IX), an irregular satellite of Saturn, obtained between mid-2017 and mid-2019. The 2017 July 6 event was the first stellar occultation by an irregular satellite ever observed. The occultation chords were compared to a 3D shape model of the satellite obtained from Cassini observations. The rotation period available in the literature led to a sub-observer point at the moment of the observed occultations where the chords could not fit the 3D model. A procedure was developed to identify the correct sub-observer longitude. It allowed us to obtain the rotation period with improved precision compared to the currently known value from literature. We show that the difference between the observed and the predicted sub-observer longitude suggests two possible solutions for the rotation period. By comparing these values with recently observed rotational light curves and single- chord stellar occultations, we can identify the best solution for Phoebe's rotational period as 9.27365 ± 0.00002 h. From the stellar occultations, we also obtained six geocentric astrometric positions in the ICRS as realized by the Gaia DR2 with uncertainties at the 1-mas level

    The Transiting System GJ1214: High-Precision Defocused Transit Observations and a Search for Evidence of Transit Timing Variation

    Get PDF
    Aims: We present 11 high-precision photometric transit observations of the transiting super-Earth planet GJ1214b. Combining these data with observations from other authors, we investigate the ephemeris for possible signs of transit timing variations (TTVs) using a Bayesian approach. Methods: The observations were obtained using telescope-defocusing techniques, and achieve a high precision with random errors in the photometry as low as 1mmag per point. To investigate the possibility of TTVs in the light curve, we calculate the overall probability of a TTV signal using Bayesian methods. Results: The observations are used to determine the photometric parameters and the physical properties of the GJ1214 system. Our results are in good agreement with published values. Individual times of mid-transit are measured with uncertainties as low as 10s, allowing us to reduce the uncertainty in the orbital period by a factor of two. Conclusions: A Bayesian analysis reveals that it is highly improbable that the observed transit times is explained by TTV, when compared with the simpler alternative of a linear ephemeris.Comment: Submitted to A&
    corecore