68 research outputs found

    Impact of diastolic pulmonary gradient and pulmonary artery pulse index on outcomes in heart transplant patients—Results from the Eurotransplant database

    Get PDF
    BackgroundPredicting complications associated with pulmonary hypertension (PH) after cardiac transplantation is an important factor when considering cardiac transplantation. The transpulmonary gradient (TPG) is recommended to quantify PH in transplant candidates. Nonetheless, PH remains a common driver of mortality. The diastolic pressure gradient (DPG) and pulmonary vascular resistance (PVR) can differentiate post- from combined pre- and post-capillary PH and may improve estimation of PH-associated risks. We used a large European cohort of transplant candidates to assess whether the pulmonary pulsatility index (PAPi), improves prediction of graft failure and mortality compared to DPG and PVR.MethodsOut of all patients undergoing heart transplantation between 2009 and 2019 in Eurotransplant member states (n = 10,465), we analyzed the impact of PH (mPAP > 25 mmHg) and right heart catheter hemodynamic data on graft failure and mortality within 1–5 years.ResultsIn 1,407 heart transplant patients with PH (79% male, median age 54 years, IQR 39–69 years), the median PVR was 2.5 WU (IQR 1.6 WU) with a median mPAP (pulmonary arterial pressure) of 32 mmHg (IQR 9 mmHg). Patients with low (< 3 mmHg) DPG had a better 5 year survival than those with higher DPG (log rank p = 0.023). TPG, mPAP, PAPi, and PVR did not improve prediction of survival. Low PAPi (OR = 2.24, p < 0.001) and high PVR (OR = 2.12, p = 0.005) were associated with graft failure.ConclusionPAPI and PVR are associated with graft failure in patients with PH undergoing cardiac transplantation. DPG is associated with survival in this cohort

    Gamma-glutamyltransferase is a strong predictor of secondary sclerosing cholangitis after lung transplantation for COVID-19 ARDS

    Get PDF
    Background: Lung transplantation (LTx) can be considered for selected patients suffering from COVID-19 acute respiratory distress syndrome (ARDS). Secondary sclerosing cholangitis in critically ill (SSC-CIP) patients has been described as a late complication in COVID-19 ARDS survivors, however, rates of SSC-CIP after LTx and factors predicting this detrimental sequela are unknown. Methods: This retrospective analysis included all LTx performed for post-COVID ARDS at 8 European LTx centers between May 2020 and January 2022. Clinical risk factors for SSC-CIP were analyzed over time. Prediction of SSC-CIP was assessed by ROC-analysis. Results: A total of 40 patients were included in the analysis. Fifteen patients (37.5%) developed SSC-CIP. GGT at the time of listing was significantly higher in patients who developed SSC-CIP (median 661 (IQR 324-871) vs 186 (109-346); p = 0.001). Moreover, higher peak values for GGT (585 vs 128.4; p < 0.001) and ALP (325 vs 160.2; p = 0.015) were found in the ‘SSC’ group during the waiting period. Both, GGT at the time of listing and peak GGT during the waiting time, could predict SSC-CIP with an AUC of 0.797 (95% CI: 0.647-0.947) and 0.851 (95% CI: 0.707-0.995). Survival of ‘SSC’ patients was severely impaired compared to ‘no SSC’ patients (1-year: 46.7% vs 90.2%, log-rank p = 0.004). Conclusions: SSC-CIP is a severe late complication after LTx for COVID-19 ARDS leading to significant morbidity and mortality. GGT appears to be a sensitive parameter able to predict SSC-CIP even at the time of listing

    Lung transplantation after allogeneic stem cell transplantation : a pan-European experience

    Get PDF
    Late-onset noninfectious pulmonary complications (LONIPCs) affect 6% of allogeneic stem cell transplantation (SCT) recipients within 5 years, conferring subsequent 5-year survival of 50%. Lung transplantation is rarely performed in this setting due to concomitant extrapulmonary morbidity, excessive immunosuppression and concerns about recurring malignancy being considered contraindications. This study assesses survival in highly selected patients undergoing lung transplantation for LONIPCs after SCT. SCT patients undergoing lung transplantation at 20 European centres between 1996 and 2014 were included. Clinical data pre- and post-lung transplantation were reviewed. Propensity score-matched controls were generated from the Eurotransplant and Scandiatransplant registries. Kaplan-Meier survival analysis and Cox proportional hazard regression models evaluating predictors of graft loss were performed. Graft survival at 1, 3 and 5 years of 84%, 72% and 67%, respectively, among the 105 SCT patients proved comparable to controls (p=0.75). Sepsis accounted for 15 out of 37 deaths (41%), with prior mechanical ventilation (HR 6.9, 95% CI 1.0-46.7; p Lung transplantation outcomes following SCT were comparable to other end-stage diseases. Lung transplantation should be considered feasible in selected candidates. No SCT-specific factors influencing outcome were identified within this carefully selected patient cohort.Peer reviewe

    Impact of donor lung quality on post-transplant recipient outcome in the Lung Allocation Score era in Eurotransplant - a historical prospective study

    Get PDF
    The aim of this study was to investigate whether there is an impact of donation rates on the quality of lungs used for transplantation and whether donor lung quality affects post-transplant outcome in the current LAS era. All consecutive adult LTx performed in Eurotransplant (ET) between January 2012 and December 2016 were included (N=3053). Donors used for LTx in countries with high donation rate were younger (42% vs. 33% ≤ 45 years, p<0.0001), were less often smokers (35% vs. 46%, p<0.0001), had more often clear chest X-rays (82% vs. 72%, p<0.0001), had better donor oxygenation ratio's (20% vs. 26% with PaO /FiO ≤ 300 mmHg, p<0.0001) and had better lung donor score values (LDS) (28% vs. 17% with LDS=6, p<0.0001) compared to donors used for LTx in countries with low donation rate. Survival rates for the groups LDS =6 and ≥7 at 5 years were 69.7% and 60.9% (p=0.007). Lung donor quality significantly impacts on long-term patient survival. Countries with a low donation rate are more oriented to using donor lungs with a lesser quality compared to countries with a high donation rate. Instead of further stretching donor eligibility criteria, the full potential of the donor pool should be realized

    Translocation of a Bak C-Terminus Mutant from Cytosol to Mitochondria to Mediate Cytochrome c Release: Implications for Bak and Bax Apoptotic Function

    Get PDF
    One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear.To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1.Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax

    Down-Regulation of miR-101 in Endothelial Cells Promotes Blood Vessel Formation through Reduced Repression of EZH2

    Get PDF
    Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role

    Identification of Common Genetic Variants Influencing Spontaneous Dizygotic Twinning and Female Fertility.

    Get PDF
    Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.Support for the Netherlands Twin Register was obtained from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193,480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007); Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB; European Research Council (ERC-230374 and ERC-284167); Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1). Part of the genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951). We acknowledge support from VU Amsterdam and the Institute for Health and Care Research (EMGO+). The Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). Dale R. Nyholt was supported by the Australian Research Council (ARC) Future Fellowship (FT0991022), NHMRC Research Fellowship (APP0613674) Schemes and by the Visiting Professors Programme (VPP) of the Royal Netherlands Academy of Arts and Sciences (KNAW). Allan F. McRae was supported by an NRMRC Career Development Fellowship (APP1083656). Grant W. Montgomery was supported by NIH grant (HD042157, a collaborative study of the genetics of DZ twinning) and NHMRC Fellowship (GNT1078399). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886), and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). We would like to thank also 23andMe's consented research participants for contributing data on age at menarche for the FSHB gene locus and the Twinning Gwas Consortium (TGC). Co-authors from: Finland (Anu Loukola, Juho Wedenoja, Emmi Tikkanen, Beenish Qaiser), Sweden (Nancy Pedersen, Andrea Ganna), United kingdom King's College London (Department of Twin Research & Genetic Epidemiology: Pirro Hysi, Massimo Mangino), Institute of Psychiatry, Psychology & Neuroscience, Medical Research Council Social, Genetic and Developmental Psychiatry Centre (Eva Krapohl, Andrew McMillan).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.00

    Lung allocation score: The Eurotransplant model versus the revised US model - a cross-sectional study

    Get PDF
    Both Eurotransplant (ET) and the US use the lung allocation score (LAS) to allocate donor lungs. In 2015, the US implemented a new algorithm for calculating the score while ET has fine-tuned the original model using business rules. A comparison of both models in a contemporary patient cohort was performed. The rank positions and the correlation between both scores were calculated for all patients on the active waiting list in ET. On February 6th 2017, 581 patients were actively listed on the lung transplant waiting list. The median LAS values were 32.56 and 32.70 in ET and the US, respectively. The overall correlation coefficient between both scores was 0.71. Forty-three per cent of the patients had a < 2 point change in their LAS. US LAS was more than two points lower for 41% and more than two points higher for 16% of the patients. Median ranks and the 90th percentiles for all diagnosis groups did not differ between both scores. Implementing the 2015 US LAS model would not significantly alter the current waiting list in ET
    corecore