114 research outputs found
Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane
Photodynamic therapy (PDT) induces damage to the endothelium, which can lead to increased vascular permeability and, under intensive PDT conditions, even to platelet aggregation, vasoconstriction, and blood flow stasis. Eventually, ischemia, hypoxia, and inflammation can occur, resulting in angiogenesis. We studied the sequence of the vascular events after Visudyne®-PDT in the chicken chorioallantoic membrane (CAM) at day 11 of development. Using epi-fluorescence microscopy, we monitored the regrowth of capillaries in the PDT treated area. Immediately after irradiation, the treatment resulted in blood flow arrest. And 24 h post PDT, sprouting of new blood vessels was observed at the edge of the PDT zone. Neovessels looping out from the edge of the PDT zone gave rise to specialized endothelial tip structures guiding the vessels towards the center of the treated area. At 48 h almost all of the treated area was repopulated with functional but morphologically altered vasculature. These observations also showed reperfusion of some of the vessels that had been closed by the PDT treatment. CAM samples were immunohistochemically stained for Ki-67 showing proliferation of endothelial cells in the PDT area. Also, several markers of immature and angiogenic blood vessels, such as αVβ3-integrin, vimentin and galectin-1, were found to be enhanced in the PDT area, while the endothelial maturation marker intercellular adhesion molecule (ICAM)-1 was found to be suppressed. These results demonstrate that the new vascular bed is formed by both neo-angiogenesis and reperfusion of existing vessels. Both the quantitative real-time RT–PCR profile and the response to pharmacological treatment with Avastin®, an inhibitor of angiogenesis, suggest that angiogenesis occurs after PDT. The observed molecular profiling results and the kinetics of gene regulation may enable optimizing combination therapies involving PDT for treatment of cancer and other diseases
High-definition tDCS of the temporo-parietal cortex enhances access to newly learned words
Learning associations between words and their referents is crucial for language learning in the developing and adult brain and for language re-learning after neurological injury. Non-invasive transcranial direct current stimulation (tDCS) to the posterior temporo-parietal cortex has been suggested to enhance this process. However, previous studies employed standard tDCS set-ups that induce diffuse current flow in the brain, preventing the attribution of stimulation effects to the target region. This study employed high-definition tDCS (HD-tDCS) that allowed the current flow to be constrained to the temporo-parietal cortex, to clarify its role in novel word learning. In a sham-controlled, double-blind, between-subjects design, 50 healthy adults learned associations between legal non-words and unfamiliar object pictures. Participants were stratified by baseline learning ability on a short version of the learning paradigm and pairwise randomized to active (20 mins; N = 25) or sham (40 seconds; N = 25) HD-tDCS. Accuracy was comparable during the baseline and experimental phases in both HD-tDCS conditions. However, active HD-tDCS resulted in faster retrieval of correct word-picture pairs. Our findings corroborate the critical role of the temporo-parietal cortex in novel word learning, which has implications for current theories of language acquisition
Scoring of senescence signalling in multiple human tumour gene expression datasets, identification of a correlation between senescence score and drug toxicity in the NCI60 panel and a pro-inflammatory signature correlating with survival advantage in peritoneal mesothelioma
Background: Cellular senescence is a major barrier to tumour progression, though its role in pathogenesis of cancer and other diseases is poorly understood in vivo. Improved understanding of the degree to which latent senescence signalling persists in tumours might identify intervention strategies to provoke "accelerated senescence" responses as a therapeutic outcome. Senescence involves convergence of multiple pathways and requires ongoing dynamic signalling throughout its establishment and maintenance. Recent discovery of several new markers allows for an expression profiling approach to study specific senescence phenotypes in relevant tissue samples. We adopted a "senescence scoring" methodology based on expression profiles of multiple senescence markers to examine the degree to which signals of damage-associated or secretory senescence persist in various human tumours.
Results: We first show that scoring captures differential induction of damage or inflammatory pathways in a series of public datasets involving radiotherapy of colon adenocarcinoma, chemotherapy of breast cancer cells, replicative senescence of mesenchymal stem cells, and progression of melanoma. We extended these results to investigate correlations between senescence score and growth inhibition in response to similar to 1500 compounds in the NCI60 panel. Scoring of our own mesenchymal tumour dataset highlighted differential expression of secretory signalling pathways between distinct subgroups of MPNST, liposarcomas and peritoneal mesothelioma. Furthermore, a proinflammatory signature yielded by hierarchical clustering of secretory markers showed prognostic significance in mesothelioma.
Conclusions: We find that "senescence scoring" accurately reports senescence signalling in a variety of situations where senescence would be expected to occur and highlights differential expression of damage associated and secretory senescence pathways in a context-dependent manner
Organoiridium complexes : anticancer agents and catalysts
Iridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar Ir(I) complexes, such as Crabtree's hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl Ir(III) complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d(6) Ir(III) centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C^C-chelating ligands can even stabilize Ir(IV) and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexes as both catalysts and anticancer agents. Initial studies of anticancer activity with organoiridium complexes focused on square-planar Ir(I) complexes because of their structural and electronic similarity to Pt(II) anticancer complexes such as cisplatin. Recently, researchers have studied half-sandwich Ir(III) anticancer complexes. These complexes with the formula [(Cp(x))Ir(L^L')Z](0/n+) (with Cp* or extended Cp* and L^L' = chelated C^N or N^N ligands) have a much greater potency (nanomolar) toward a range of cancer cells (especially leukemia, colon cancer, breast cancer, prostate cancer, and melanoma) than cisplatin. Their mechanism of action may involve both an attack on DNA and a perturbation of the redox status of cells. Some of these complexes can form Ir(III)-hydride complexes using coenzyme NAD(P)H as a source of hydride to catalyze the generation of H2 or the reduction of quinones to semiquinones. Intriguingly, relatively unreactive organoiridium complexes containing an imine as a monodentate ligand have prooxidant activity, which appears to involve catalytic hydride transfer to oxygen and the generation of hydrogen peroxide in cells. In addition, researchers have designed inert Ir(III) complexes as potent kinase inhibitors. Octahedral cyclometalated Ir(III) complexes not only serve as cell imaging agents, but can also inhibit tumor necrosis factor α, promote DNA oxidation, generate singlet oxygen when photoactivated, and exhibit good anticancer activity. Although relatively unexplored, organoiridium chemistry offers unique features that researchers can exploit to generate novel diagnostic agents and drugs with new mechanisms of action
Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system
Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species
Consensus guidelines for the use and interpretation of angiogenesis assays
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
- …