103 research outputs found

    Entropy of water and the temperature-induced stiffening of amyloid networks

    Get PDF
    In water, networks of semi-flexible fibrils of the protein α\alpha-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible crosslinking enables us to quantify the endothermic binding enthalpy and an estimate the effective size of hydrophobic patches on the fibril surface.Comment: 13 pages, 6 figure

    Natural Language Processing with Small Feed-Forward Networks

    Full text link
    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory budget.Comment: EMNLP 2017 short pape

    Adaptive radiation therapy for localized mesothelioma with mediastinal metastasis using helical tomotherapy.

    Get PDF
    The purpose of this study was to compare 2 adaptive radiotherapy strategies with helical tomotherapy. A patient having mesothelioma with mediastinal nodes was treated using helical tomotherapy with pretreatment megavoltage CT (MVCT) imaging. Gross tumor volumes (GTVs) were outlined on every MVCT study. Two alternatives for adapting the treatment were investigated: (1) keeping the prescribed dose to the targets while reducing the dose to the OARs and (2) escalating the target dose while maintaining the original level of healthy tissue sparing. Intensity modulated radiotherapy (step-and-shoot IMRT) and 3D conformal radiotherapy (3DCRT) plans for the patient were generated and compared. The primary lesion and nodal mass regressed by 16.2% and 32.5%, respectively. Adapted GTVs and reduced planning target volume (PTV) margins of 4 mm after 22 fractions decrease the planned mean lung dose by 19.4%. For dose escalation, the planned prescribed doses may be increased from 50.0 to 58.7 Gy in PTV(1) and from 60.0 to 70.5 Gy in PTV(2). The step-and-shoot IMRT plan was better in sparing healthy tissue but did not provide target coverage as well as the helical tomotherapy plan. The 3DCRT plan resulted in a prohibitively high planned dose to the spinal cord. MVCT studies provide information both for setup correction and plan adaptation. Improved healthy tissue sparing and/or dose escalation can be achieved by adaptive planning

    SARS-CoV-2 N-protein induces the formation of composite α-synuclein/N-protein fibrils that transform into a strain of α-synuclein fibrils

    Get PDF
    The presence of deposits of alpha-synuclein (αS) fibrils in the cells of the brain is a hallmark of several α-synucleinopathies, including Parkinson's disease. As most disease cases are not familial, it is likely that external factors play a role in the disease onset. One of the external factors that may influence the disease onset is viral infection. It has recently been shown in in vitro assays that in the presence of SARS-Cov-2 N-protein, αS fibril formation is faster and proceeds in an unusual two-step aggregation process. Here, we show that faster fibril formation is not due to the SARS-CoV-2 N-protein-catalysed formation of an aggregation-prone nucleus. Instead, aggregation starts with the formation of a population of mixed αS/N-protein fibrils with low affinity for αS. Mixed amyloid fibrils, composed of two different proteins, have not been observed before. After the depletion of N-protein, fibril formation comes to a halt, until a slow transformation into fibrils with characteristics of a pure αS fibril strain occurs. This transformation into a strain of αS fibrils subsequently results in a second phase of fibril growth until a new equilibrium is reached. We hypothesize that this fibril strain transformation may be of relevance in the cell-to-cell spread of the αS pathology and disease onset

    A phase II multi-institutional study assessing simultaneous in-field boost helical tomotherapy for 1-3 brain metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our research group has previously published a dosimetric planning study that demonstrated that a 60 Gy/10 fractions intralesional boost with whole-brain radiotherapy (WBRT) to 30 Gy/10 fractions was biologically equivalent with a stereotactic radiosurgery (SRS) boost of 18 Gy/1 fraction with 30 Gy/10 fractions WBRT. Helical tomotherapy (HT) was found to be dosimetrically equivalent to SRS in terms of target coverage and superior to SRS in terms of normal tissue tolerance. A phase I trial has been now completed at our institution with a total of 60 enrolled patients and 48 evaluable patients. The phase II dose has been determined to be the final phase I cohort dose of 60 Gy/10 fractions.</p> <p>Methods/Design</p> <p>The objective of this clinical trial is to subject the final phase I cohort dose to a phase II assessment of the endpoints of overall survival, intracranial control (ICC) and intralesional control (ILC). We hypothesize HT would be considered unsuitable for further study if the median OS for patients treated with the HT SIB technique is degraded by 2 months, or the intracranial progression-free rates (ICC and ILC) are inferior by 10% or greater compared to the expected results with treatment by whole brain plus SRS as defined by the RTOG randomized trial. A sample size of 93 patients was calculated based on these parameters as well as the statistical assumptions of alpha = 0.025 and beta = 0.1 due to multiple statistical testing. Secondary assessments of toxicity, health-related quality-of-life, cognitive changes, and tumor response are also integrated into this research protocol.</p> <p>Discussion</p> <p>To summarize, the purpose of this phase II trial is to assess this non-invasive alternative to SRS in terms of central nervous system (CNS) control when compared to SRS historical controls. A follow-up phase III trial may be required depending on the results of this trial in order to definitively assess non-inferiority/superiority of this approach. Ultimately, the purpose of this line of research is to provide patients with metastatic disease to the brain a shorter course, dose intense, non-invasive radiation treatment with equivalent or improved CNS control/survival and health-related quality-of-life/toxicity profile when compared to SRS radiotherapy.</p> <p>Trial registration</p> <p>Clinicaltrials.gov - <a href="http://www.clinicaltrials.gov/ct2/show/NCT01543542">NCT01543542</a>.</p

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe
    • 

    corecore