91 research outputs found

    WELLFOCUS PPT – modified positive psychotherapy to improve well-being in psychosis: study protocol for a pilot randomised controlled trial

    Get PDF
    BACKGROUND: The promotion of well-being is an important goal of recovery oriented mental health services. No structured, evidence-based intervention exists that aims to increase the well-being in people with severe mental illness such as psychosis. Positive psychotherapy (PPT) is a promising intervention for this goal. Standard PPT was adapted for use with people with psychosis in the UK following the Medical Research Council framework for developing and testing complex interventions, resulting in the WELLFOCUS Model describing the intended impact of WELLFOCUS PPT. This study aims to test the WELLFOCUS Model, by piloting the intervention, trial processes, and evaluation strategy. METHODS/DESIGN: This study is a non-blinded pragmatic pilot RCT comparing WELLFOCUS PPT provided as an 11-session group therapy in addition to treatment as usual to treatment as usual alone. Inclusion criteria are adults (aged 18–65 years) with a main diagnosis of psychosis who use mental health services. A target sample of 80 service users with psychosis are recruited from mental health services across the South London and Maudsley NHS Foundation Trust. Participants are randomised in blocks to the intervention and control group. WELLFOCUS PPT is provided to groups by specifically trained and supervised local therapists and members of the research team. Assessments are conducted before randomisation and after the group intervention. The primary outcome measure is well-being assessed by the Warwick-Edinburgh Mental Well-being Scale. Secondary outcomes include good feelings, symptom relief, connectedness, hope, self-worth, empowerment, and meaning. Process evaluation using data collected during the group intervention, post-intervention individual interviews and focus groups with participants, and interviews with trial therapists will complement quantitative outcome data. DISCUSSION: This study will provide data on the feasibility of the intervention and identify necessary adaptations. It will allow optimisation of trial processes and inform the evaluation strategy, including sample size calculation, for a future definitive RCT. TRIAL REGISTRATION: Current Controlled Trials ISRCTN04199273 – WELLFOCUS study: an intervention to improve well-being in people with psychosis, Date registered: 27 March 2013, first participant randomised on 26 April 2013

    Extinction filters mediate the global effects of habitat fragmentation on animals

    Get PDF
    Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests

    Conformational changes during pore formation by the perforin-related protein pleurotolysin

    Get PDF
    Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ~70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function

    BIOFRAG: A new database for analysing BIOdiversity responses to forest FRAGmentation

    Get PDF
    Habitat fragmentation studies are producing inconsistent and complex results across which it is nearly impossible to synthesise. Consistent analytical techniques can be applied to primary datasets, if stored in a flexible database that allows simple data retrieval for subsequent analyses. Method: We developed a relational database linking data collected in the field to taxonomic nomenclature, spatial and temporal plot attributes and further environmental variables (e.g. information on biogeographic region. Typical field assessments include measures of biological variables (e.g. presence, abundance, ground cover) of one species or a set of species linked to a set of plots in fragments of a forested landscape. Conclusion: The database currently holds records of 5792 unique species sampled in 52 landscapes in six of eight biogeographic regions: mammals 173, birds 1101, herpetofauna 284, insects 2317, other arthropods: 48, plants 1804, snails 65. Most species are found in one or two landscapes, but some are found in four. Using the huge amount of primary data on biodiversity response to fragmentation becomes increasingly important as anthropogenic pressures from high population growth and land demands are increasing. This database can be queried to extract data for subsequent analyses of the biological response to forest fragmentation with new metrics that can integrate across the components of fragmented landscapes. Meta-analyses of findings based on consistent methods and metrics will be able to generalise over studies allowing inter-comparisons for unified answers. The database can thus help researchers in providing findings for analyses of trade-offs between land use benefits and impacts on biodiversity and to track performance of management for biodiversity conservation in human-modified landscapes.Fil: Pfeifer, Marion. Imperial College London; Reino UnidoFil: Lefebvre, Veronique. Imperial College London; Reino UnidoFil: Gardner, Toby A.. Stockholm Environment Institute; SueciaFil: Arroyo Rodríguez, Víctor. Universidad Nacional Autónoma de México; MéxicoFil: Baeten, Lander. University of Ghent; BélgicaFil: Banks Leite, Cristina. Imperial College London; Reino UnidoFil: Barlow, Jos. Lancaster University; Reino UnidoFil: Betts, Matthew G.. State University of Oregon; Estados UnidosFil: Brunet, Joerg. Swedish University of Agricultural Sciences; SueciaFil: Cerezo Blandón, Alexis Mauricio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Cisneros, Laura M.. University of Connecticut; Estados UnidosFil: Collard, Stuart. Nature Conservation Society of South Australia; AustraliaFil: D´Cruze, Neil. The World Society for the Protection of Animals; Reino UnidoFil: Da Silva Motta, Catarina. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Duguay, Stephanie. Carleton University; CanadáFil: Eggermont, Hilde. University of Ghent; BélgicaFil: Eigenbrod, Félix. University of Southampton; Reino UnidoFil: Hadley, Adam S.. State University of Oregon; Estados UnidosFil: Hanson, Thor R.. No especifíca;Fil: Hawes, Joseph E.. University of East Anglia; Reino UnidoFil: Heartsill Scalley, Tamara. United State Department of Agriculture. Forestry Service; Puerto RicoFil: Klingbeil, Brian T.. University of Connecticut; Estados UnidosFil: Kolb, Annette. Universitat Bremen; AlemaniaFil: Kormann, Urs. Universität Göttingen; AlemaniaFil: Kumar, Sunil. State University of Colorado - Fort Collins; Estados UnidosFil: Lachat, Thibault. Swiss Federal Institute for Forest; SuizaFil: Lakeman Fraser, Poppy. Imperial College London; Reino UnidoFil: Lantschner, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Laurance, William F.. James Cook University; AustraliaFil: Leal, Inara R.. Universidade Federal de Pernambuco; BrasilFil: Lens, Luc. University of Ghent; BélgicaFil: Marsh, Charles J.. University of Leeds; Reino UnidoFil: Medina Rangel, Guido F.. Universidad Nacional de Colombia; ColombiaFil: Melles, Stephanie. University of Toronto; CanadáFil: Mezger, Dirk. Field Museum of Natural History; Estados UnidosFil: Oldekop, Johan A.. University of Sheffield; Reino UnidoFil: Overal , Williams L.. Museu Paraense Emílio Goeldi. Departamento de Entomologia; BrasilFil: Owen, Charlotte. Imperial College London; Reino UnidoFil: Peres, Carlos A.. University of East Anglia; Reino UnidoFil: Phalan, Ben. University of Southampton; Reino UnidoFil: Pidgeon, Anna Michle. University of Wisconsin; Estados UnidosFil: Pilia, Oriana. Imperial College London; Reino UnidoFil: Possingham, Hugh P.. Imperial College London; Reino Unido. The University Of Queensland; AustraliaFil: Possingham, Max L.. No especifíca;Fil: Raheem, Dinarzarde C.. Royal Belgian Institute of Natural Sciences; Bélgica. Natural History Museum; Reino UnidoFil: Ribeiro, Danilo B.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Ribeiro Neto, Jose D.. Universidade Federal de Pernambuco; BrasilFil: Robinson, Douglas W.. State University of Oregon; Estados UnidosFil: Robinson, Richard. Manjimup Research Centre; AustraliaFil: Rytwinski, Trina. Carleton University; CanadáFil: Scherber, Christoph. Universität Göttingen; AlemaniaFil: Slade, Eleanor M.. University of Oxford; Reino UnidoFil: Somarriba, Eduardo. Centro Agronómico Tropical de Investigación y Enseñanza; Costa RicaFil: Stouffer, Philip C.. State University of Louisiana; Estados UnidosFil: Struebig, Matthew J.. University of Kent; Reino UnidoFil: Tylianakis, Jason M.. University College London; Estados Unidos. Imperial College London; Reino UnidoFil: Teja, Tscharntke. Universität Göttingen; AlemaniaFil: Tyre, Andrew J.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Urbina Cardona, Jose N.. Pontificia Universidad Javeriana; ColombiaFil: Vasconcelos, Heraldo L.. Universidade Federal de Uberlandia; BrasilFil: Wearn, Oliver. Imperial College London; Reino Unido. The Zoological Society of London; Reino UnidoFil: Wells, Konstans. University of Adelaide; AustraliaFil: Willig, Michael R.. University of Connecticut; Estados UnidosFil: Wood, Eric. University of Wisconsin; Estados UnidosFil: Young, Richard P.. Durrell Wildlife Conservation Trust; Reino UnidoFil: Bradley, Andrew V.. Imperial College London; Reino UnidoFil: Ewers, Robert M.. Imperial College London; Reino Unid

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation

    Get PDF
    Peer reviewe
    corecore