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REGULAR ARTICLE

HLA epitopemismatch in haploidentical transplantation is associated with
decreased relapse and delayed engraftment

Joseph Rimando,1 Michael Slade,1 John F. DiPersio,1 Peter Westervelt,1 Feng Gao,2 Chang Liu,3,* and Rizwan Romee4,*
1Bone Marrow Transplantation and Leukemia Program, 2Division of Public Health Sciences, Department of Surgery, and 3Department of Pathology and Immunology, School
of Medicine, Washington University in St. Louis, St. Louis, MO; and 4Division of Hematologic Malignancies and Transplantation, Dana-Farber Cancer Institute, Harvard
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Key Points

•HLA eplet–derived
epitope mismatch
may quantify HLA
disparity more accu-
rately than HLA allele
mismatch in haploiden-
tical transplantation.

•HLA eplet–derived
epitope mismatch is
associated with
decreased relapse
and delayed engraft-
ment in haploidentical
transplantation.

HLA disparity is traditionally measured at the antigen or allele level, and its impact on

haploidentical hematopoietic cell transplantation (haplo-HCT)with high-dose posttransplant

cyclophosphamide (PTCy) is unclear. To the best of our knowledge, the relationship

between HLA eplet–derived epitope mismatch (EM) and clinical outcome has not been

examined in haplo-HCT. We retrospectively analyzed 148 patients who received a

peripheral blood, T-cell–replete haplo-HCT with PTCy at a single center. HLA EM was

quantified using an HLAMatchmaker-based method and was stratified by class and vector.

The primary outcome was incidence of relapse. The total number of mismatched epitopes

(MEs) per patient-donor pair in our patient population ranged from 0 to 51 (median, 24)

in the graft-versus-host (GVH) direction and 0 to 47 (median, 24) in the host-versus-graft

(HVG) direction. Higher HLA class II EM in the GVH direction was associated with a

significantly reduced risk of relapse (adjusted hazard ratio [HR], 0.952 per ME; P5 .002) and

improved relapse-free survival (adjusted HR, 0.974 per ME; P 5 .020). Higher HLA class II

EM in the HVG direction was associated with longer time to neutrophil (adjusted HR,

0.974 per ME; P 5 .013) and platelet (adjusted HR, 0.961 per ME; P 5 .001) engraftment. In

peripheral blood haplo-HCT patients, increased HLA EM was associated with a protective

effect on the risk of relapse in the GVH direction but a negative effect on time to count

recovery in the HVG direction. HLA EM based on the HLA Matchmaker represents a novel

strategy to predict clinical outcome in haplo-HCT.

Introduction

Allogeneic hematopoietic cell transplantation (allo-HCT) is a vital therapy for hematologic malignancies
and often represents the only curative therapy for refractory disease.1 Historically, HLA-matched sibling
donors provide the best clinical outcomes,2 whereas HLA-matched unrelated donors (MUDs) are
considered the second-line option.2,3 However, matched sibling donors and MUDs are often limited by
donor availability, especially for ethnic minorities.4,5 This limitation represents a major obstacle and
restricts the number of patients who can receive potentially curative allo-HCT. In contrast, the parents
and children of a patient are all potential haploidentical donors by sharing at least 1 HLA haplotype, with
each sibling having a 50% chance. Thus, haploidentical allo-HCT (haplo-HCT) represents an attractive
alternative to MUD allo-HCT due to its increased donor availability. With the use of posttransplant
cyclophosphamide (PTCy) to selectively deplete alloreactive T cells,6-10 haplo-HCT has been shown to
have similar outcomes when compared with MUD allo-HCT.8,11-17
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Given the increased donor availability for haplo-HCT, several studies
have investigated the impact of donor characteristics on clinical
outcomes, with HLA disparity representing a topic of particular
interest.18-22 For patients undergoing mismatched unrelated allo-
HCT, increased HLA mismatch has been associated with inferior
survival and increased treatment-related mortality (TRM).23-28

However, the impact of HLA disparity in haplo-HCT is less clear,
with the previous literature presenting differing results.18-22

HLA disparity is traditionally measured at the antigen or allele level.
The HLAMatchmaker program, however, measures HLA disparity at
the level of the HLA eplet–derived epitope, which is defined as
a 3-dimensional patch of linear or discontinuous polymorphic
amino acids within a 3-Å radius on the surface of an HLA antigen
capable of inducing an alloantibody response.29,30 Duquesnoy29

and Duquesnoy and Askar30 developed the definition of the eplet-
derived epitope through the study of molecular models of crystal-
lized antigen-antibody complexes.29,30 They subsequently compiled
a comprehensive database of eplet-derived epitopes present on the
surfaces of HLA antigens through the study of crystallographic
structures of HLA molecules.29,30 With the use of this database, the
HLAMatchmaker algorithm quantifies the structural and functional
differences between a donor and recipient’s HLA antigens that may
induce subsequent antibody responses. In the setting of kidney
transplantation, greater class II eplet–derived epitope mismatch
(EM) was associated with the development of donor-specific
antibodies (DSAs) and shortened graft survival.31

To the best of our knowledge, the role of HLA eplet–derived EM
has not been studied in the setting of haplo-HCT. We hypoth-
esized that a higher degree of HLA EM in the graft-versus-host
(GVH) direction would be associated with an enhanced graft-
versus-leukemia (GVL) effect leading to a protective effect on
relapse. To test this hypothesis, we assessed the impact of HLA
disparity at the epitope level on patient outcomes after haplo-
HCT. We found that increased HLA class II EM was associated
with a significantly decreased risk of relapse in the GVH direction
and delayed count recovery in the host-versus-graft (HVG)
direction, which may inform decisions on donor selection and
posttransplant care.

Materials and methods

Patients and demographics

We performed a retrospective study on 148 patients receiving
PTCy-based, peripheral blood, T-cell–replete haplo-HCT at a
single center from July 2009 to May 2016. The date of last follow-
up was September 2016. Diagnoses included acute myeloid
leukemia (AML), acute lymphoblastic leukemia (ALL), chronic
myeloid leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma,
myelodysplastic syndrome, multiple myeloma, and severe aplastic
anemia. All patients age 18 years or older receiving PTCy-based,
peripheral blood, T-cell–replete haplo-HCT were included regard-
less of diagnosis. Per protocol, patients (95%) received tacrolimus
and mycophenolate mofetil for graft-versus-host disease (GVHD)
prophylaxis in addition to PTCy unless intolerant. The Institutional
Review Board at Washington University in St. Louis approved this
study. Informed consent was waived given the study’s retrospective
nature. Data collection on patient demographics and clinical
variables was conducted systematically by a single chart reviewer.
For original data, please contact the corresponding authors.

HLA disparity

High-resolution HLA-typing data were collected for the following
HLA loci: A, B, C, DRB1, and DQB1. High-resolution HLA typing
was performed by a combination of sequence-based typing,
reverse sequence-specific oligos, or sequence-specific primer
methods. For patients or donors with intermediate HLA-typing
data only, their 2-field, high-resolution HLA typing was inferred
using the online tool Haplostats (www.haplostats.org).32 The most
likely HLA high-resolution typing was chosen for each case. HLA
EM was quantified using the HLAMatchmaker software (HLA-
Matchmaker ABC Eplet Matching version 2.0 and DRDQDP
Matching version 2.1; http://www.hlamatchmaker.net)29,30 and
a Python script (available at https://github.com/cliu32/hla-mm)
in a dose-dependent fashion in the GVH and HVG directions
separately. EM was further stratified by HLA class. The HLAMatch-
maker software considers both antibody-verified and theoretically
predicted epitopes, or “eplets,” which are defined as 3-dimensional
patches of linear or discontinuous polymorphic amino acids within a
3-Å radius on the surface of an HLA antigen capable of inducing an
alloantibody response.29,30

Outcomes

The primary outcome was the incidence of relapse. Secondary
outcomes were overall survival (OS), relapse-free survival (RFS),
TRM, acute GVHD (aGVHD [all grades]), chronic GVHD (cGVHD),
time to neutrophil engraftment, time to platelet engraftment, and
graft failure. OS was defined as the time from day 0 of the haplo-
HCT to time of last follow-up or death from any cause. RFS was
defined as the time from day 0 of the haplo-HCT to relapse or death
from a cause other than relapse of disease. Relapse was defined
per accepted criteria.33 TRMwas defined as death prior to day128
or due to any cause other than relapsed disease. aGVHD and
cGVHD were defined by previously accepted criteria.34,35 Time to
neutrophil engraftment was defined as the first of 3 consecutive
days with an absolute neutrophil count (ANC) .500 cells per
microliter. Time to platelet engraftment was defined as the first of
2 weeks with a platelet count .20 000 cells per microliter with no
transfusion support in the past 2 weeks. Primary graft failure was
defined as undetectable (,5%) donor chimerism on short-tandem-
repeat testing in the absence of disease relapse leading to death
or retransplantation. Secondary graft failure was loss of donor
chimerism or decline of ANC to below 500 cells per microliter
in the absence of relapse, GVHD, and cytomegalovirus (CMV)
infection. Graft failure in this study included patients with both
primary and secondary failure. Patients with death prior to day128
were excluded from consideration for graft failure.

Data analysis and statistics

Patient demographics and disease characteristics were summa-
rized using counts and frequencies for categorical variables or
means and standard deviations for continuous variables. The
distributions of patient demographics and disease characteristics
across total HLA EM (dichotomized by its median) were compared
using the Student t test, x2 test, or Mann-Whitney U test as
appropriate.

The amount of EM and allele mismatch (AM), stratified by class and
vector, were both analyzed as a continuous variable in relation to the
primary and secondary outcomes, and the assumption of linearity
was assessed graphically based on residuals out of the
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corresponding regression models. Associations between HLA
disparity (including both EM and AM) and OS or RFS were
assessed using Cox proportional hazards regression models.
Cumulative incidences of relapse, TRM, aGVHD, cGVHD, neutro-
phil engraftment, and platelet engraftment were estimated using Gray
subdistribution regression to account for competing risks. Death
without relapse was considered a competing risk for relapse. Relapse
was considered a competing risk for TRM. Death without count
recovery was considered a competing risk for count recovery.
Graft failure, relapse, or death without GVHD were considered
competing risks for GVHD. To facilitate graphical presentation,
HLA disparity was also dichotomized by the median and the
curves of survival or cumulative incidence were estimated using
Kaplan-Meier product limit methods and compared by the log-rank
test or Gray test as appropriate.

Associations between HLA disparity and outcomes in the univariate
analysis were adjusted for other significant demographic and
clinical variables in a multivariate analysis. Covariates considered
for adjustment were: male sex; age at transplant; donor age at
transplant; presence of sex mismatch; CMV match status; donor
relationship; presence of ablative regimen; disease status at
transplant (active vs remission); refined Disease Risk Index
(DRI)36 (low/intermediate vs high/very high); Hematopoietic Cell
Transplant Comorbidity Index (HCT-CI)37; presence of DSAs; and
presence of any, class I, or class II anti-HLA antibodies. Due to the
relatively small sample size, these potential confounders were
adjusted using marginal structural models with an inverse proba-
bility weighting (IPW). Specifically, a linear regression model was
fitted to each of the HLA disparity indices to estimate the
conditional probability of the observed HLA disparity level given
individuals’ demographic and clinical characteristics. The inverse of
these probabilities were then used as weights when estimating the
associations between the HLA disparity indices and clinical
outcomes. This weighting process literally created a “pseudopo-
pulation” that was balanced in terms of potential confounders
across all HLA disparity levels.38 Additionally, a prespecified subset
analysis was performed for AML vs non-AML patients and AML
active disease vs AML remission patients. All tests were 2-sided,
and significance was set at a P value of .05. The inverse probability
weights were calculated with the library ipw in statistical package
R,38 and all other analyses were performed using SAS 9.4 (SAS
Institutes, Cary, NC).

Results

Patient characteristics

We identified 148 patients who underwent haplo-HCT during
the study period (Table 1). Seventy-five patients (50.7%) were
male. The median age at transplant was 53 years (range, 19-73
years), and the median donor age at transplant was 42 years
(range, 15-70 years). Ninety-five patients (64.2%) had AML. Sixty-
one patients (41.2%) received an ablative regimen. Seventy-seven
patients (54.6%) had high- or very-high-risk disease based
on the refined DRI.36 Seventy-one patients (48.0%) had a
sex-mismatched donor, and 58 patients (39.2%) had a
CMV-mismatched donor.

Patients were stratified by total (class I and II) EM in the GVH
and HVG directions above and below the median (Table 1).
Patients with total EM in the GVH direction above the median

had a significantly higher rate of receiving an ablative regimen
(36 vs 25; P 5 .035) when compared with those below the
median. Patients with total EM in the HVG direction above the
median had a significantly lower Karnofsky Performance Status
(KPS) (80 vs 90; P 5 .050) when compared with those below
the median. No other patient characteristics varied significantly
between these groups.

HLA high-resolution typing

Thirty patients (20.3%), 8 donors (5.4%), and 3 patient-donor pairs
(2.0%) had HLA high-resolution typing at HLA-A, B, C, DRB1, and
DQB1. However, 123 patients (83.1%), 115 donors (77.7%), and
102 patient-donor pairs (68.9%) had HLA class II high-resolution
typing at DRB1 and DQB1. HLA high-resolution typing provided by
Haplostats had a median likelihood percentage of 85.6% (range,
27.2%-100%) for patients and 75.6% (range, 7.5%-100%) for
donors.

Distributions of HLA EM

The median of total EM in the GVH direction was 24 (range, 0-51)
(Table 2). The median of total EM in the HVG direction was 24
(range, 0-47). Total, class I, and class II HLA EM in the GVH and
HVG directions were plotted against the corresponding HLA AM
category to characterize their relationship (Figure 1). EM correlated
with AM (R2 ranging from 0.39 to 0.59), but significant overlap
existed between the ranges of EM for each level of AM in all
categories.

Patient outcomes

The median time to follow-up for survivors was 19.6 months (range,
2.9-65.8 months). Eighty-eight patients (59.5%) were deceased,
and 56 patients (37.8%) had relapsed disease by the time of the
last follow-up. Seventy-three patients (50.7%) developed aGVHD
(any grade), and 38 (26.0%) developed cGVHD. The median time
to neutrophil engraftment was 17 days (range, 10-78 days) among
the 133 neutrophil-engrafted patients, and the median time to
platelet engraftment was 29 days (range, 8-214 days) among
the 112 platelet-engrafted patients. Six patients (4.1%) had graft
failure.

Class II EM in the GVH direction was associated with

reduced relapse and improved RFS

We found a significant association between class II EM in the
GVH direction and a lower incidence of relapse (hazard ratio [HR],
0.966 per mismatched epitope [ME]; 95% confidence interval
[CI], 0.938-0.995; P 5 .023) on univariate analysis (Table 2;
Figure 2A). Class I, class II, and total EM in the HVG direction were
not associated with reduced relapse. Multivariate analysis was
performed using IPW to adjust for potential confounders, and
class II EM in the GVH direction remained significantly associated
with a reduced incidence of relapse (adjusted HR, 0.952 per ME;
95% CI, 0.923-0.982; P 5 .002) (Table 3). Univariate associa-
tions between potential confounders and selected clinical out-
comes are included in supplemental Table 1. Individual class II loci
were then studied to delineate the relationship between class II
EM and relapse. DRB1 EM in the GVH direction was associated
with decreased relapse (HR, 0.933 per ME; 95%CI, 0.885-0.982;
P 5 .008), whereas DQB1 EM in the GVH direction was not
(supplemental Table 2).
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Univariate analysis also identified a significant association be-
tween class II AM in the GVH direction and a lower incidence of
relapse (HR, 0.720 per mismatched allele [MA]; 95% CI, 0.524-
0.990; P5 .043) (Table 4). Similar to EM, class I, class II, and total
AM in the HVG direction were not associated with reduced
relapse. After multivariate adjustment, class II AM in the GVH
direction remained significantly associated with a reduced in-
cidence of relapse (adjusted HR, 0.645 per MA; 95% CI, 0.451-
0.924; P 5 .017) (Table 3).

To further study the relationship between class II EM in the GVH
direction and the incidence of relapse, subgroup analyses were
performed for disease type and disease status at transplant. For
AML patients, class II EM in the GVH direction was significantly
associated with a lower incidence of relapse (HR, 0.51; P 5 .045)
(Figure 3A). After adjusting for potential confounders, this association
remained significant (adjusted HR, 0.959 per ME; 95% CI, 0.926-
0.994; P 5 .022) (Table 3). For AML patients with active
disease at the time of transplant, class II EM in the GVH direction
was significantly associated with a lower incidence of relapse

Table 2. Univariate relationships between EM and clinical outcomes

GVH HVG

Outcome HR 95% CI P HR 95% CI P

Class I EM

Relapse 1.011 0.965-1.059 NS 1.015 0.975-1.058 NS

OS 1.014 0.976-1.053 NS 1.034 0.996-1.074 .082

RFS 1.019 0.984-1.056 NS 1.035 1.000-1.072 .049

TRM 1.012 0.962-1.064 NS 1.032 0.978-1.088 NS

aGVHD 0.991 0.954-1.030 NS — — —

cGVHD 0.981 0.933-1.033 NS — — —

Neutrophil engraftment — — — 0.975 0.949-1.003 .075

Platelet engraftment — — — 0.974 0.945-1.003 .079

Class II EM

Relapse 0.966 0.938-0.995 .023 0.994 0.964-1.025 NS

OS 0.983 0.961-1.006 .145 1.009 0.985-1.033 NS

RFS 0.978 0.957-0.999 .037 1.007 0.985-1.029 NS

TRM 1.006 0.976-1.037 NS 1.013 0.982-1.046 NS

aGVHD 1.004 0.978-1.030 NS — — —

cGVHD 1.007 0.977-1.039 NS — — —

Neutrophil engraftment — — — 0.976 0.955-0.997 .027

Platelet engraftment — — — 0.971 0.950-0.993 .010

Total EM

Relapse 0.978 0.954-1.004 .091 1.000 0.978-1.023 NS

OS 0.991 0.972-1.011 NS 1.015 0.995-1.035 .142

RFS 0.989 0.971-1.007 NS 1.014 0.996-1.032 .137

TRM 1.008 0.983-1.033 NS 1.018 0.989-1.048 NS

aGVHD 1.000 0.979-1.023 NS — — —

cGVHD 1.000 0.973-1.028 NS — — —

Neutrophil engraftment — — — 0.977 0.959-0.996 .015

Platelet engraftment — — — 0.975 0.958-0.992 .004

GVH (median, 24; range, 0-51); HVG (median, 25; range, 0-47).
—, test not performed.
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(HR, 0.38; P 5 .037) (Figure 3D). However, this association did
not remain significant after multivariate adjustment (adjusted HR,
0.970 per ME; 95% CI, 0.922-1.020; P 5 .232). For non-AML
patients, class II EM in the GVH direction was not significantly
associated with a lower incidence of relapse (HR, 0.36; P 5 .062).

As with relapse, class II EM in the GVH direction was significantly
associated with improved RFS (HR, 0.978 per ME; 95% CI, 0.957-
0.999; P 5 .037) in the univariate analysis (Table 2; Figure 2B)
and multivariate analysis (adjusted HR, 0.974 per ME; 95% CI,
0.952-0.996; P 5 .020) (Table 3). Additionally, DRB1 EM in the
GVH direction was associated with significantly improved RFS
(HR, 0.956 per ME; 95% CI, 0.920-0.994; P 5 .023), whereas the
improvement in RFS with DQB1 EM in the GVH direction did
not reach statistical significance (supplemental Table 2). Similar to
incidence of relapse, class II EM in the HVG direction was not
significantly associated with RFS. Although class I EM in the HVG
direction was weakly associated with worsened RFS (HR, 1.035
per ME; 95% CI, 1.000-1.072; P5 .049) (Table 2), this association
did not remain significant after adjusting for confounders (adjusted
HR, 1.031 per ME; 95% CI, 0.996-1.068; P 5 .087).

Class II AM in the GVH direction was not significantly associated
with RFS (Table 4). Class I AM in the HVG direction was
significantly associated with worse RFS (HR, 1.363 per MA; 95%
CI, 1.056-1.760; P 5 .018) (Table 4), but this association did not
remain significant after adjustment for confounders (adjusted HR,
1.234 per MA; 95% CI, 0.949-1.606; P 5 .117).

EM in the HVG direction was associated with delayed

neutrophil and platelet engraftment

Total EM in the HVG, but not in the GVH, direction was significantly
associated with delayed time to neutrophil and platelet engraftment
(Table 2), and this association was largely driven by class II EM in the
HVG direction (Figure 2C-D). After adjusting for potential con-
founders, class II EM in the HVG direction remained significantly
associated with delayed time to neutrophil engraftment (adjusted HR,
0.974 per ME; 95% CI, 0.954-0.995; P 5 .013) and platelet
engraftment (adjusted HR, 0.961 per ME; 95% CI, 0.938-0.983;
P 5 .001) (Table 3). Evaluating the individual class II loci, DQB1 EM
in the HVG direction was associated with delayed time to neutrophil
(HR, 0.957 per ME; 95% CI, 0.926-0.989; P 5 .010) and platelet
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Figure 1. HLA EM plotted against HLA AM. Total (A), class I (C), and class II (E) GVH disparities and total (B), class I (D), and class II (F) HVG disparities are shown. HLA EM

correlated with AM in all classes and vector directions (R2 ranging from 0.39 to 0.59), but significant overlap existed between the ranges of EM for each level of AM in all categories.
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(HR, 0.953 per ME; 95% CI, 0.918-0.988; P 5 .009) engraftment,
whereas DRB1 HVG EM was not. Among the 6 patients with graft
failure, 4 were above the median of class II EM in the HVG direction.
After excluding these 6 cases, class II EM in the HVG direc-
tion remained associated with delayed neutrophil (HR 5 0.686;
P 5 .027) and platelet engraftment (HR 5 0.690; P 5 .046).

To further quantify the relationship between class II HVG EM
and engraftment, we compared rates of engraftment at 30 days
between patients with class II HVG EM below the median vs
above the median. For neutrophil engraftment, 84.3% of patients
(95% CI, 73.2%-91.1%) with class II HVG EM below the median
had engrafted compared with 79.5% of patients (95% CI, 68.5%-
87.0%) above the median. For platelet engraftment, 48.6% of
patients (95% CI, 36.4%-59.7%) with class II HVG EM below the
median had engrafted compared with 34.6% (95% CI, 24.2%-
45.2%) of patients above the median.

Total AM in the HVG direction was also significantly associated
with delayed time to platelet engraftment (Table 4), and this
association was again largely driven by class II HVG AM. After
adjusting for potential confounders, class II HVG AM remained
significantly associated with delayed time to platelet engraftment
(adjusted HR, 0.609 per MA; 95% CI, 0.474-0.781; P , .001)
(Table 3). Total and class II HVG AM were not associated with
neutrophil engraftment.

Six patients had graft failure and these numbers were too small to
perform any meaningful statistical analysis.

EM was not significantly associated with OS, TRM, or

GVHD outcomes

In the univariate analysis, EM was not associated with OS, TRM,
aGVHD, or cGVHD (Table 2).
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Figure 2. EM, stratified by the median, and clinical outcomes. (A-B) Greater class II EM in the GVH direction was associated with reduced incidence of relapse and

improved RFS, and these associations remained significant in multivariate analysis. (C-D) Greater class II EM in the HVG direction was associated with longer time to neutrophil

and platelet engraftment, and these associations remained significant in multivariate analysis. (E-F) Class I and II EM in the GVH direction were not associated with aGVHD of

any grade.
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Discussion

In this study, we evaluated the association between HLA EM and
clinical outcomes in patients receiving PTCy-based haplo-HCT. EM
offered a potentially more accurate quantification of HLA disparity
when compared with AM. Although EM correlated well with AM,
significant overlap existed for the ranges of EM at each level of AM.
Greater class II EM in the GVH direction was associated with
reduced incidence of relapse and improved RFS without affecting
GVHD outcomes, suggesting an enhanced GVL effect. DRB1 EM
primarily accounted for this association between class II EM and
reduced relapse and improved RFS. Furthermore, on subgroup
analysis, class II EM in the GVH direction was associated with
reduced relapse in AML patients. No association was seen with OS
despite the association with relapse and RFS, potentially due to the
relatively small sample size. Although greater class II EM in the GVH
direction did not affect count recovery, greater class II EM in the
HVG direction was associated with both delayed time to neutrophil
and platelet engraftment, and DQB1 EM primarily accounted for
this association.

Several studies have examined the relationship between HLA
disparity and clinical outcome in haplo-HCT.18-22 These studies,
however, differ with each other on the significance of HLA disparity
in predicting outcomes. Similar to our study, Kasamon et al18 also
found an association between class II GVH AM and both decreased
relapse and improved RFS. Additionally, Solomon et al22 reported
an association between greater total AM in the GVH direction and
reduced relapse. HLA EM offers a potentially more accurate
quantification of HLA disparity compared with AM (0-51 for
combined EM in the GVH direction vs 1-5 for AM in our study).
Although HLA EM correlates with HLA AM, significant overlap exists
between the ranges of EM among different levels of AM in the total,
class I, and class II categories. EM could potentially reconcile
conflicting results in the HLA disparity literature by harmonizing the
quantification of HLA disparity. EM may also allow more sensitive and
coherent detection of the impact of HLA disparity on transplant
outcomes. In support of this notion, we detected a significant,
reciprocal effect of class II EM on relapse and RFS, as well as
a consistent effect on neutrophil and platelet engraftment. AM,
however, only detected an association between class II disparity

and relapse and platelet engraftment but not RFS or neutrophil
engraftment.

Our data support the hypothesis that greater class II EM in the GVH
direction is associated with a greater GVL effect, leading to
reduced relapse. Although the HLAMatchmaker software identifies
epitopes capable of inducing an HLA-specific alloantibody re-
sponse, Duquesnoy et al reported several examples of alloreactive
T cells specific for HLA epitopes that can be structurally defined by
the HLAMatchmaker software.39-43 In particular, Hiraiwa et al39

reported that allospecific T cells that can discriminate between
HLA-B35 and HLA-Bw53, 2 antigens that differ by a set of public
epitopes. Overall, the clinical and immunological significance of

Table 4. Univariate relationships between AM and selected clinical

outcomes

GVH HVG

Outcome HR 95% CI P HR 95% CI P

Class I AM*

Relapse 0.917 0.688-1.223 NS 1.042 0.788-1.377 NS

RFS 1.178 0.909-1.526 NS 1.363 1.056-1.760 .018

Neutrophil engraftment — — — 0.870 0.743-1.019 .085

Platelet engraftment — — — 0.871 0.743-1.021 .088

Class II AM†

Relapse 0.720 0.524-0.990 .043 0.785 0.571-1.079 .136

RFS 0.819 0.633-1.061 .130 0.922 0.715-1.188 NS

Neutrophil engraftment — — — 0.876 0.684-1.120 NS

Platelet engraftment — — — 0.734 0.575-0.938 .013

Total AM‡

Relapse 0.848 0.696-1.033 NS 0.914 0.749-1.116 NS

RFS 0.998 0.849-1.175 NS 1.131 0.948-1.349 .173

Neutrophil engraftment — — — 0.896 0.786-1.022 .101

Platelet engraftment — — — 0.832 0.738-0.937 .002

—, test not performed.
*GVH (median, 3; range, 0-3); HVG (median, 3; range, 0-3).
†GVH (median, 2; range, 0-2); HVG (median, 2; range, 0-2).
‡GVH (median, 4; range, 0-5); HVG (median, 4; range, 0-5).

Table 3. Selected multivariate analyses for EM, AM, and clinical outcomes

GVH HVG

Outcome Adjusted HR 95% CI P Adjusted HR 95% CI P

Multivariate analyses for class II EM

Relapse, all patients 0.952 0.923-0.982 .002 — — —

Relapse, AML patients 0.959 0.926-0.994 .022 — — —

RFS 0.974 0.952-0.996 .020 — — —

Neutrophil engraftment — — — 0.974 0.954-0.995 .013

Platelet engraftment — — — 0.961 0.938-0.983 .001

Multivariate analyses for class II AM

Relapse, all patients 0.645 0.451-0.924 .017 — — —

Platelet engraftment — — — 0.609 0.474-0.781 ,.001

Multivariate analyses were conducted using marginal structural models with IPW. Covariates considered for adjustment were: male sex; age at transplant; donor age at transplant;
presence of sex mismatch; CMV match status; donor relationship; presence of ablative regiment; disease status at transplant (active vs remission); refined DRI37 (low/intermediate vs
high/very high); HCT-CI38; presence of DSAs; and presence of any class I or class II anti-HLA antibodies.
—, test not performed.
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individual epitopes quantified by the HLAMatchmaker is not
completely understood. Therefore, it remains possible that the load
of EM is a surrogate or indirect biomarker for T-cell alloreactivity
against leukemia in our patient population. Further studies are
needed to test this hypothesis and determine the underlying
mechanism.

The rationale for the association of class II but not class I or total EM
with reduced relapse remains unclear. A 2003 study by Vollmer et al44

reported that AML blasts express significantly lower levels of HLA class
I molecules compared with monocytes from healthy volunteers. In
contrast, AML blasts expressed similar levels of HLA class II molecules
when compared with healthy volunteer monocytes. Additionally,
studies by Masuda et al45 and Brouwer et al46 report reduced HLA
class I expression on leukemic cells. Larger, laboratory-based studies
are needed to better understand the importance of HLA class II
disparity and HLA expression on AML blasts.

In 2008, Duquesnoy et al47 found no association between
HLAMatchmaker-defined triplet matching and clinical outcomes in
a cohort of 744 patients receiving an unrelated allo-HCT with 1 HLA
class I AM. Our study differs from this one in several aspects. The

Duquesnoy et al47 study used the first generation of the HLAMatch-
maker software, which only accounts for linear amino acid sequences
as potential immunogenic epitopes. We have used the updated
version of the HLAMatchmaker software, which accounts for
discontinuous amino acid sequences in addition to linear amino acid
sequences forming an epitope. Second, our study has examined both
class I and II disparity and focused on a haplo-HCT patient population.

Consistent with previous work, we have found that class II EM in
the HVG direction was independently associated with delayed
platelet and also neutrophil engraftment.20 Greater HLA disparity
in the HVG direction may lead to greater host alloreactivity against
the graft, which will in turn cause poor graft function through direct
cytotoxicity. These associations do not appear to impact OS possibly
due to the modest effect size and robust supportive care available.
Nevertheless, prolonged hospitalization and increased cost may be
implicated.

Our study has several limitations. First, due to the retrospective nature
of the study, some patients and donors had only intermediate-
resolution HLA typing, necessitating the use of Haplostats to infer the
high-resolution HLA typing.32 Additionally, our small sample size limited
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Figure 3. HLA class II EM in the GVH direction, stratified by the

median, and relapse: subgroup analyses. (A-B) Greater class II

EM in the GVH direction was associated with reduced incidence of

relapse in AML patients but not in non-AML patients, and this

association remained significant after multivariate analysis. (C-D)

Greater class II EM in the GVH direction was associated with reduced

incidence of relapse in AML patients with active disease, but this

association did not remain significant after multivariate analysis.
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the power of this study and our ability to build a more comprehensive
model for multivariate analysis. Our data set also lacked HLA-DP
typing, preventing us from analyzing its relationship with patient
outcomes. DBP1mismatch has been associatedwith patient outcomes
in the unrelated donor and haploidentical donor settings.22,28,48,49

Finally, many of our patients receiving a sibling donor haplo-HCT lacked
HLA typing for their parents, preventing us from examining the role of
noninherited maternal antigen (NIMA) mismatch. Future investigations
of EM and haplo-HCT should investigate DP and NIMA mismatch to
further our knowledge of their importance.

In summary, HLA EM represents a novel strategy to predict clinical
outcome and improve donor selection in haplo-HCT. Increased
HLA class II EM in the GVH direction may be beneficial in reducing
relapsed disease in haplo-HCT patients without increased GVHD.
Additionally, we found that greater HLA class II EM in the HVG
direction is associated with longer time to engraftment. Our novel
findings, if validated in larger prospective and/or registry-based
studies, could help develop donor selection strategies aimed at
enhancing GVL in patients undergoing haplo-HCT.
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