36 research outputs found

    Soliton physics with semiconductor exciton–polaritons in confined systems

    Get PDF
    In the past decade, there has been a significant progress in the study of non-linear polariton phenomena in semiconductor microcavities. One of the key features of nonlinear systems is the emergence of solitons. The complexity and the inherently strong nonlinearity of the polariton system made it a perfect sandpit for observing solitonic effects in half-light half-matter environment. This review focuses on the theory and the latest experimental elucidating physics as well as potential applications of conservative and dissipative solitons in exciton–polariton systems

    Backward Cherenkov radiation emitted by polariton solitons in a microcavity wire

    Get PDF
    Exciton-polaritons in semiconductor microcavities form a highly nonlinear platform to study a variety of effects interfacing optical, condensed matter, quantum and statistical physics. We show that the complex polariton patterns generated by picosecond pulses in microcavity wire waveguides can be understood as the Cherenkov radiation emitted by bright polariton solitons, which is enabled by the unique microcavity polariton dispersion, which has momentum intervals with positive and negative group velocities. Unlike in optical fibres and semiconductor waveguides, we observe that the microcavity wire Cherenkov radiation is predominantly emitted with negative group velocity and therefore propagates backwards relative to the propagation direction of the emitting soliton. We have developed a theory of the microcavity wire polariton solitons and of their Cherenkov radiation and conducted a series of experiments, where we have measured polariton-soliton pulse compression, pulse breaking and emission of the backward Cherenkov radiation

    Perturbation theory for domain walls in the parametric Ginzburg-Landau equation

    Get PDF
    We demonstrate that in the parametrically driven Ginzburg-Landau equation arbitrarily small nongradient corrections lead to qualitative differences in the dynamical properties of domain walls in the vicinity of the transition from rest to motion. These differences originate from singular rotation of the eigenvector governing the transition. We present analytical results on the stability of Ising walls, deriving explicit expressions for the critical eigenvalue responsible for the transition from rest to motion. We then develop a weakly nonlinear theory to characterize the singular character of the transition and analyze the dynamical effects of spatial inhomogeneities

    Second-quantized Landau-Zener theory for dynamical instabilities

    Full text link
    State engineering in nonlinear quantum dynamics sometimes may demand driving the system through a sequence of dynamically unstable intermediate states. This very general scenario is especially relevant to dilute Bose-Einstein condensates, for which ambitious control schemes have been based on the powerful Gross-Pitaevskii mean field theory. Since this theory breaks down on logarithmically short time scales in the presence of dynamical instabilities, an interval of instabilities introduces quantum corrections, which may possibly derail a control scheme. To provide a widely applicable theory for such quantum corrections, this paper solves a general problem of time-dependent quantum mechanical dynamical instability, by modelling it as a second-quantized analogue of a Landau-Zener avoided crossing: a `twisted crossing'.Comment: 4 pages, 3 figure

    Polariton lasing in AlGaN microring with GaN/AlGaN quantum wells

    Get PDF
    Microcavity polaritons are strongly interacting hybrid light–matter quasiparticles, which are promising for the development of novel light sources and active photonic devices. Here, we report polariton lasing in the UV spectral range in microring resonators based on GaN/AlGaN slab waveguides, with experiments carried out from 4 K up to room temperature. Stimulated polariton relaxation into multiple ring resonator modes is observed, which exhibit threshold-like dependence of the emission intensity with pulse energy. The strong exciton-photon coupling regime is confirmed by the significant reduction of the free spectral range with energy and the blueshift of the exciton–like modes with increasing pulse energy. Importantly, the exciton emission shows no broadening with power, further confirming that lasing is observed at electron–hole densities well below the Mott transition. Overall, our work paves the way toward the development of novel UV devices based on the high-speed slab waveguide polariton geometry operating up to room temperature with the potential to be integrated into complex photonic circuits

    Stable vortex and dipole vector solitons in a saturable nonlinear medium

    Full text link
    We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole vector solitons in a saturable nonlinear medium in (2+1) dimensions. We construct perturbation series expansions for the vortex and dipole vector solitons near the bifurcation point where the vortex and dipole components are small. We show that both solutions uniquely bifurcate from the same bifurcation point. We also prove that both vortex and dipole vector solitons are linearly stable in the neighborhood of the bifurcation point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition, we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.

    Spin domains in one-dimensional conservative polariton solitons

    Get PDF
    We report stable orthogonally polarized domains in high-density polariton solitons propagating in a semiconductor microcavity wire. This effect arises from spin-dependent polariton–polariton interactions and pump-induced imbalance of polariton spin populations. The interactions result in an effective magnetic field acting on polariton spin across the soliton profile, leading to the formation of polarization domains. Our experimental findings are in excellent agreement with theoretical modeling taking into account these effects

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden
    corecore