105 research outputs found

    Spatial distribution of bacteria associated with the marine sponge Tethya californiana

    Get PDF
    Microbial diversity and spatial distribution of the diversity within tissue of the marine sponge Tethya californiana was analyzed based on 16S rRNA gene sequences. One candidate division and nine bacterial phyla were detected, including members of all five subdivisions of Proteobacteria. Moreover, chloroplast-derived Stramenopiles- and Rhodophyta-affiliated 16S rRNA gene sequences were found and Stramenopiles represented the most abundant clones (30%) in the clone library. On the phylum-level, the microbial fingerprint of T. californiana showed a similar pattern as its Mediterranean relative T. aurantium. An interesting difference was that Cyanobacteria that were abundantly present in T. aurantium were not found in T. californiana, but that the latter sponges harbored phototrophic Stramenopiles instead. Surprisingly, the phototrophic microorganisms were evenly distributed over the inner and outer parts of the sponge tissue, which implies that they also reside in regions without direct light exposure. The other phyla were also present in both the outer cortex and the mesohyl of the sponges. These results were confirmed by analysis on the operational taxonomic unit level. This leads to the conclusion that from a qualitative point of view, spatial distribution of microorganisms in T. californiana tissue is quite homogeneous. Thirty-two percent of the operational taxonomic units shared less than 95% similarity with any other known sequence. This indicates that marine sponges are a rich source of previously undetected microbial life

    Fungi found in Mediterranean and North Sea sponges : How specific are they?

    Get PDF
    Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twentytwo of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community

    Exploration and exploitation of the environment for novel specialized metabolites

    Get PDF
    Microorganisms are Nature's little engineers of a remarkable array of bioactive small molecules that represent most of our new drugs. The wealth of genomic and metagenomic sequence data generated in the last decade has shown that the majority of novel biosynthetic gene clusters (BGCs) is identified from cultivation-independent studies, which has led to a strong expansion of the number of microbial taxa known to harbour BGCs. The large size and repeat sequences of BGCs remain a bioinformatic challenge, but newly developed software tools have been created to overcome these issues and are paramount to identify and select the most promising BGCs for further research and exploitation. Although heterologous expression of BGCs has been the greatest challenge until now, a growing number of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS)-encoding gene clusters have been cloned and expressed in bacteria and fungi based on techniques that mostly rely on homologous recombination. Finally, combining ecological insights with state-of-the-art computation and molecular methodologies will allow for further comprehension and exploitation of microbial specialized metabolites

    Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    Get PDF
    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6), gentamicin (n=1), amikacin (n=7), trimethoprim (n=17), chloramphenicol (n=1), rifampicin (n=2) and ampicillin (n=3). Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria

    Microbial synthesis and transformation of inorganic and organic chlorine compounds

    Get PDF
    Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.The authors thank METAEXPLORE, funded by the European Union Seventh Framework Program (Grant No. 222625), BEBASIC-FES funds from the Dutch Ministry of Economic Affairs (Projects F07.001.05 and F08.004.01), Shell Global Solutions International BV, the ERC Advanced grant “Novel Anaerobes” (Project 323009), the SIAM Gravitation grant “Microbes for Health and the Environment” (Project 024.002.002) of the Netherlands Ministry of Education, Culture and Science, and the Netherlands Science Foundation (NWO) for funding.info:eu-repo/semantics/publishedVersio

    Breakthrough in marine invertebrate cell culture : Sponge cells divide rapidly in improved nutrient medium

    Get PDF
    Sponges (Phylum Porifera) are among the oldest Metazoa and considered critical to understanding animal evolution and development. They are also the most prolific source of marine-derived chemicals with pharmaceutical relevance. Cell lines are important tools for research in many disciplines, and have been established for many organisms, including freshwater and terrestrial invertebrates. Despite many efforts over multiple decades, there are still no cell lines for marine invertebrates. In this study, we report a breakthrough: we demonstrate that an amino acid-optimized nutrient medium stimulates rapid cell division in 9 sponge species. The fastest dividing cells doubled in less than 1 hour. Cultures of 3 species were subcultured from 3 to 5 times, with an average of 5.99 population doublings after subculturing, and a lifespan from 21 to 35 days. Our results form the basis for developing marine invertebrate cell models to better understand early animal evolution, determine the role of secondary metabolites, and predict the impact of climate change to coral reef community ecology. Furthermore, sponge cell lines can be used to scale-up production of sponge-derived chemicals for clinical trials and develop new drugs to combat cancer and other diseases.publishedVersio

    Comparative genomics highlights symbiotic capacities and high metabolic flexibility of the marine genus Pseudovibrio

    Get PDF
    Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges

    Organohalide-respiring Desulfoluna species isolated from marine environments

    Get PDF
    The online version of this article (https://doi.org/10.1038/s41396-019-0573-y) contains supplementary material, which is available to authorized usersThe genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third strain, designated D. spongiiphila strain DBB, from marine intertidal sediment using 1,4-dibromobenzene and sulfate as the electron acceptors and lactate as the electron donor. Each strain harbors three reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their genomes, and dehalogenated brominated but not chlorinated organohalogens. The Desulfoluna strains maintained OHR in the presence of 20?mM sulfate or 20?mM sulfide, which often negatively affect other organohalide-respiring bacteria. Strain DBB sustained OHR with 2\% oxygen in the gas phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR revealed differential induction of rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed expression of rdhA1 with 1,4-dibromobenzene, and revealed a partially shared electron transport chain from lactate to 1,4-dibromobenzene and sulfate, which may explain accelerated OHR during concurrent sulfate reduction. Versatility in using electron donors, de novo corrinoid biosynthesis, resistance to sulfate, sulfide and oxygen, and concurrent sulfate reduction and OHR may confer an advantage to marine Desulfoluna strains.We thank Johanna Gutleben and Maryam Chaib de Mares for sediment sampling, W. Irene C. Rijpstra for fatty acid analysis, and Andreas Marquardt (Proteomics Centre of the University of Konstanz) for proteomic analyses. We acknowledge the China Scholarship Council (CSC) for the support to PP and YL. The authors thank BE-BASIC funds (grants F07.001.05 and F08.004.01) from the Dutch Ministry of Economic Affairs, ERC grant (project 323009), the Gravitation grant (project 024.002.002) and the UNLOCK project (NRGWI.obrug.2018.005) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO), and National Natural Science Foundation of China (project No.51709100) for funding.info:eu-repo/semantics/publishedVersio

    Expressed protein profile of a Tectomicrobium and other microbial symbionts in the marine sponge Aplysina aerophoba as evidenced by metaproteomics.

    Get PDF
    Aplysina aerophoba is an emerging model marine sponge, with a well-characterized microbial community in terms of diversity and structure. However, little is known about the expressed functional capabilities of its associated microbes. Here, we present the first metaproteomics-based study of the microbiome of A. aerophoba. We found that transport and degradation of halogenated and chloroaromatic compounds are common active processes in the sponge microbiomes. Our data further reveal that the highest number of proteins were affiliated to a sponge-associated Tectomicrobium, presumably from the family Entotheonellaceae, as well as to the well-known symbiont "Candidatus Synechococcus spongiarium", suggesting a high metabolic activity of these two microorganisms in situ. Evidence for nitric oxide (NO) conversion to nitrous oxide was consistently observed for Tectomicrobia across replicates, by production of the NorQ protein. Moreover, we found a potential energy-yielding pathway through CO oxidation by putative Chloroflexi bacteria. Finally, we observed expression of enzymes that may be involved in the transformation of chitin, glycoproteins, glycolipids and glucans into smaller molecules, consistent with glycosyl hydrolases predicted from analyses of the genomes of Poribacteria sponge symbionts. Thus, this study provides crucial links between expressed proteins and specific members of the A. aerophoba microbiome
    corecore