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Aquafeed companies aim to provide solutions to the various challenges related to

nutrition and health in aquaculture. Solutions to promote feed efficiency and growth,

as well as improving the fish health or protect the fish gut from inflammation may include

dietary additives such as prebiotics and probiotics. The general assumption is that feed

additives can alter the fish microbiota which, in turn, interacts with the host immune

system. However, the exact mechanisms bywhich feed influences host-microbe-immune

interactions in fish still remain largely unexplored. Zebrafish rapidly have become a

well-recognized animal model to study host-microbe-immune interactions because of

the diverse set of research tools available for these small cyprinids. Genome editing

technologies can create specific gene-deficient zebrafish that may contribute to our

understanding of immune functions. Zebrafish larvae are optically transparent, which

allows for in vivo imaging of specific (immune) cell populations in whole transgenic

organisms. Germ-free individuals can be reared to study host-microbe interactions.

Altogether, these unique zebrafish features may help shed light on the mechanisms by

which feed influences host-microbe-immune interactions and ultimately fish health. In this

review, we first describe the anatomy and function of the zebrafish gut: the main surface

where feed influences host-microbe-immune interactions. Then, we further describe

what is currently known about the molecular pathways that underlie this interaction in

the zebrafish gut. Finally, we summarize and critically review most of the recent research

on prebiotics and probiotics in relation to alterations of zebrafish microbiota and immune

responses. We discuss the advantages and disadvantages of the zebrafish as an animal

model for other fish species to study feed effects on host-microbe-immune interactions.
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ZEBRAFISH AS A MODEL FOR IMMUNITY

In late 1960s, the Hungarian molecular biologist George Streisinger obtained zebrafish (Danio
rerio) to investigate molecular mechanisms applying forward genetics in a vertebrate model
[reviewed in (1)]. Initially, researchers used zebrafish to study developmental biology followed by
the employment of zebrafish in numerous other fields. Among these, zebrafish stood-out as a model
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to study immunity due to the high presence (∼70%) of human
orthologous genes in the zebrafish genome (2) and its intrinsic
characteristics. Zebrafish are small (<5 cm), highly prolific
(200–300 new progeny per week) and fast growing compared
to mice. Zebrafish develop ex-utero which, combined with
the embryos’ transparency, enables investigation of ontogeny
in vivo from an early time point in development [reviewed
in (3)]. Moreover, the use of transgenic fish facilitates in
vivo visualization of specific immune cell populations such as
neutrophils (4) based on expression of the neutrophil-associated
enzyme myeloperoxidase (5) using fluorescent microscopy. In
addition, their well-annotated genome eased the generation of
mutant zebrafish lines, some of which contributed to elucidate
immune gene functions [reviewed in (3)]. In the last decade,
genome editing techniques based on Zinc finger nuclease
[reviwed in (6)], TALENs (7) and the highly successful CRISPR-
Cas technique (8, 9) changed the speed at which single gene
functions can be addressed in this model organism. Currently
gene insertion still appears more challenging than gene knock-
out, something that will undoubtedly change in the near future
(10). Zebrafish characteristics combined with these unique
research tools established these small cyprinids as an important
animal model to study immune processes and underlying
molecular mechanisms.

ZEBRAFISH INTESTINE: STRUCTURE,
FUNCTION, AND MICROBIOTA

Zebrafish do not have a stomach and their digestive tract
is anatomically divided into separate sections: the mouth,
the esophagus, three gut segments (anterior, middle, and
posterior) and the anus. The zebrafish esophagus is connected
with the anterior gut segment, where the nutrient absorption
predominantly occurs due to a high presence of digestive
enzymes. Nutrient uptake gradually diminishes from the anterior
to the posterior gut segments. Ion transport, water reabsorption,
fermentation processes as well as certain immune functions occur
in the middle and posterior gut segment (11, 12). Wang et al.
investigated the gene expression of the adult zebrafish gut and
compared it to the gut of mice which is anatomically divided
into: mouth, esophagus, stomach, three small intestine sections
[duodenum, jejunum, and ileum), cecum, large intestine, rectum
and anus (13)]. In this study the zebrafish gut was divided into
equal-length segments (called S1–S7, from anterior to posterior)
and, based on subsequent transcriptomic analysis, regrouped
into three main segments: S1–S5, S6, and S7 corresponding to
small and large murine gut (14). Subsequently, Lickwar et al.
performed transcriptomics on adult intestinal epithelial cells
(IECs) from zebrafish, stickleback, mouse and human (15).
They specified that the segments S1-S4 of the zebrafish gut
presented 493 highly expressed genes from which 70 were also
upregulated in the mouse anterior gut (duodenum and ileum-
like segments). Next to this, the authors found a core set of
genes present in all vertebrate IECs as well as conservation in
transcriptional start sites and regulatory regions, independent of
sequence similarity (15).

Besides all the similarities described above, there are clear
anatomical differences between zebrafish and the murine
digestive tract. Zebrafish do not have a stomach, intestinal crypts,
Peyer’s patches nor Paneth cells [reviewed in (16)]. In addition,
there are dissimilarities in feeding habits, environmental
conditions, body sizes and/or specific metabolic requirements.
The fact that for instance, lipid metabolism is regulated by similar
gut segments between zebrafish and mouse does not imply
homology since their metabolism differs greatly: i.e., zebrafish
do not have brown fat (13). Still it remains striking that IECs
of different species are more similar in gene expression and
regulation (regardless of species intestinal anatomy or feeding
habits) than different cell types of the same species (15). The
evidence that gene expression and regulation of this expression
in the gut is so highly conserved between species suggests
the potential of zebrafish as a valid model for other fish
species such as other cyprinids or salmonids when investigating
intestinal function.

It has been shown in mice that colonization of the gut
with specific microbes induces immune system function. For
example, colonization of germ-free (GF) mice with segmented
filamentous bacteria induced activation of CD4+ T cells as
well as IgA production (17). Rawls et al. generated a GF
zebrafish larval model to study the function of the gut
microbiota (18). Using this model they examined the effect
of colonization on the host transcriptional response (6 dpf -
days post fertilization- larvae) by DNA microarray analysis.
Similarly to mice or humans, microbiota-associated gene
expressions clustered in several canonical pathways mainly
related to four physiological functions: epithelial cell turn-
over, nutrient metabolism, xenobiotic metabolism, and innate
immune responses (18). In mammals, microbiome colonization
may occur during birth (19) or prenatally in the womb (20).
In zebrafish, microbiome colonization is thought to occur
at hatching although vertical transmission of microbiome
components during oviposition has also been suggested (21).
Recently, the colonization cycle of microbial species into the
gut of zebrafish larvae has been studied in more detail using
several generations of GF zebrafish larvae mono-associated with
Aeromonas veronii (22). The colonization cycle was found to
be divided in four steps: (1) immigration of environmental
microbes into the fish, (2) gut adaptation of such microbes, (3)
microbe emigration from the host to the environment, and (4)
environmental adaptation of the microbes. Both environmental
and host gut microbial adaptation were assessed by microbial
growth rate, abundance and persistence within the gut or the
environment. When comparing four evolved isolates (undergone
multiple cycles through the host) and the ancestral strain the
authors observed that the evolved isolates were more abundantly
present in the fish gut, emphasizing the role of immigration and
further adaptation of species into the zebrafish gut.

Earlier colonization studies showed that immigration into
the host and gut adaptation are found to be time-specific
for each microbe: γ-Proteobacteria were highly abundant in
environmental samples as well as in the gut of zebrafish larvae
while β-Proteobacteria were mostly abundant in environmental
samples and in the gut of juvenile zebrafish, indicating a
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delayed colonization by certain species of β-Proteobacteria after
initial exposure (23). Further research may clarify the specific
species involved in the colonization process and whether the
colonization delay is due to low microbe immigration to or
adaptation to the host gut. During colonization, two major
microbial shifts in colonization of zebrafish were described: a first
shift at 10 dpf from embryo to larvae and a second shift between
35 and 75 dpf, from juvenile to early adult (23). During the first
shift at 10 dpf some individuals had high taxa an richness samples
(resembling embryos) while others showed low taxa richness
and diversity (resembling juveniles). This distribution could
be the result of different developing speed among the larvae.
Since feeding generally commences at 6 dpf and zebrafish larvae
actively hunt for the (live) feed some fish grow and develop faster
than others. In support of the zebrafish observations, studies in
other fish species also describe an age-dependent decrease in
species density and diversity of the gut microbial community
from larval to adult stages [reviewed in (24)]. The embryo-
to-larva shift could be due to the consumption of exogenous
feed (Paramecium) and the juvenile-to-early-adult shift could
be due to physiological processes such as sexual maturation
(23). Nonetheless, it cannot be excluded that microbiota may
adapt and expand due to certain feed components or that the
live feed itself brings along microbes and microbial analysis of
feed samples could further clarify gut colonization dynamics.
Most significantly, so far a putative contribution of a maturing
immune system regarding microbiota composition has hardly
been addressed in zebrafish.

Larval zebrafish have functional and well-developed organs
but their immune system is not completely mature yet. Adaptive
immunematuration in zebrafish is an active research topic within
the scientific field. In a relatively small study, we showed that T
cells control Proteobacteria (Vibrio) abundance in the zebrafish
gut, providing evidence that like in mice the adaptive immune
system plays a role in shaping the microbiota composition
(25). T cells are present in the thymus by 4 dpf as shown
by using CD4-1:mCherry transgenic zebrafish (26) and CD8a+
antibody staining (27). It was shown that T cells egress from
the thymus as early as 10 dpf. This suggests that from that time
point onwards systemic adaptive responses could be mounted
in the zebrafish. However, more in depth studies on the exact
timing (the variability thereof) and functionality of these thymic
emigrants are warranted.

After the initial colonization period, important for both
host and microbe development, the microbiota is believed to
enter a stable state. Comparison of gut microbiota of wild-
caught zebrafish and zebrafish raised in two separate laboratory
facilities revealed that there is a shared so-called core gut
microbiota (23, 28). High quality 16S rRNA gene analysis
showed common and abundant bacterial groups represented
by 21 operational taxonomic units (OTUs), dominated by
members of the Proteobacteria phylum (genera Aeromonas
and Shewanella) followed by Fusobacteria or Firmicutes (class
Bacilli), Actinobacteria and Bacteroidetes phyla (28).

In conclusion, all organisms on earth are colonized with
bacterial species from their environment. The host and
colonizing microbes adapt to ensure fitness of both the host

and microbiota. It is important to realize that only performing
colonization studies using zebrafish larvae may not represent the
complete picture. Especially the maturation of the host immune
system can have a profound effects on shaping the intestinal
microbiota and, therefore, extrapolation of larval results to
juveniles or adults should be carefully examined. Nonetheless,
the fact that zebrafish can be reared GF and are still optically
transparent at 10 dpf together with the possibility of transgenesis
of immune cell populations make zebrafish a very powerful
organism to study the timing of microbial colonization and
immune system maturation.

SHAPING THE MICROBIOTA:
ENVIRONMENTAL AND HOST FACTORS

Microbes can establish symbiotic relationships with their host
by, for instance, facilitating nutrient digestion of diets. Host
(biotic) and environmental (abiotic) factors play a role in the
modulation of the (intestinal) microbiota. For example, zebrafish
larvae exposed to naturally found concentrations of antibiotics
together with an antinutritional factor (soy saponin) showed
an increased neutrophil recruitment in the gut as well as
dysbiosis in the overall microbiome composition (29). A meta-
analysis of 16S rRNA gene sequence data from 25 individual
fish gut communities (30) integrated five already published
zebrafish data-sets (28, 31). Microbial intestinal communities
from different species clustered together and separately from
environmental samples. Within the intestinal microbial cluster
different gut bacterial communities exist depending on trophic
level (herbivores, carnivores, or omnivores), habitats (saltwater,
freshwater, estuarine, or migratory fish), and sampling methods
(30). Taking the observations together, the symbiotic process
between host and bacteria is highly conserved and partly depends
on diet and natural habitat.

So which host mechanisms influence the gut microbiota
composition? In order to study to what extend the gut selects
the microbial community, GF mice were colonized with gut
microbiota of conventionally-raised (CONV) zebrafish and vice-
versa, GF zebrafish were colonized with gut microbiota of
CONV mice. The mouse microbiota generally contains a higher
proportion of Firmicutes and Bacteroides compared to the
zebrafish microbiota which is dominated by Proteobacteria.
Interestingly, after transfer of the mouse microbiota into GF
zebrafish, the relative abundance of the Proteobacteria increased
toward a microbiota composition of zebrafish. Vice-versa,
when zebrafish microbes (dominated by Proteobacteria) were
transferred to mice recipient the Firmicutes from this zebrafish
content flourished up to >50% compared to the Firmicutes
abundance of 1% in original zebrafishmicrobiota (31). Therefore,
it seems that the host gut environment shapes the microbiota.

The immune system is part of this host gut environment. For
example, zebrafish gut macrophages can shape the microbiota
via interferon regulatory factor irf8. Adult irf8-deficient
zebrafish displayed a reduced number of macrophages (mpeg1.1
promoter), presented reduced c1q genes expression (c1qa,
c1qb, c1qc, and c1ql) and severe dysbiosis (Fusobacteria, α-
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and γ-Proteobacteria diminished in favor of δ-Proteobacteria)
compared to controls. Downregulation of c1q genes may imply
an ineffective complement system which could contribute to the
observed dysregulation of commensal microbiota. Restauration
of irf8 expression reversed c1q genes expression and the levels
of commensal microbes (32). However, a recent study showed
that the mpeg1.1 promoter is not only marking macrophages
but also phagocytic B lymphocytes in adult zebrafish (33). This
might indicate that B cells might also play a role in shaping
the microbiota.

In addition to the influence of the fish innate immune system
on shaping the microbial communities, there is evidence that
the adaptive immune system also plays a role in this process.
Adult wild-type zebrafish displayed a decreased abundance of
Proteobacteria (Vibrio) compared to zebrafish lacking adaptive
immunity (rag1-/-), indicating that the innate immune system
alone cannot fully regulate all members of the microbiota in the
gut. Also, adoptive transfer of T and non-T cells (B and NK-like
cells) from wild-types to rag1-/- fish showed that transfer of T
cells, but not B/NK-like cells, in the rag1-/- fish diminishedVibrio
spp. outgrowth 1 week after transfer, suggesting that T cells could
regulate the abundance of certain intestinal microbial species.
Furthermore, the lack of adaptive immune response together
with altered microbiota induced an inflamed state in the gut
of aged zebrafish (14 weeks post feralization): il-1β and cxcl2-
l2 were upregulated and il10, ifnγ , and il17f2 downregulated
compared to controls. These aged rag1-/- zebrafish developed
dropsy (edema caused by bacterial infection) or became anorexic,
confirming the physiological effects of an absence of adaptive
immunity and possibly a dysregulated microbiota (25). Others
also tested the contribution of the adaptive immune system
to gut microbiota in adult zebrafish. In this study, rag1-/- or
wild-type zebrafish were either housed separately or were co-
housed. In segregated genotypes, rag1-/- microbial communities
differed from that of wild-types, suggesting a selective pressure
of the adaptive immune system. However, such effect was lost
when rag1-/- and wild-type zebrafish were housed together (34).
This study suggested that housing could have more influence
on microbial diversity than (the absence of the) adaptive
immunity. The observation seems to contradict an earlier meta-
analysis where different rearing conditions did not result in
phylogenetically divergent gut microbiota although cohousing
of distinct genotypes was not included in their study (30). Even
though the exact extent to which the host immune system affects
the microbiota is not completely elucidated, the aforementioned
studies (25, 31, 32, 34) suggest selective pressures of the innate
and adaptive immune system on the composition of the host
gut microbiota.

Contrary to the putative selective pressure of the gut immunity
on the microbiota, chance and random distribution (neutral
model) was also investigated as explanation for the initial/early
assembly of the zebrafish gut microbial community (35). Non-
neutral processes, such as immune system or feed could become
more important for microbial modulation at older stages. Gut
bacterial communities in zebrafish could be modulated mostly
by ecological dynamics outside of the host, on a broader scale
(35, 36). Although microbial ecology processes outside the host

certainly play a role in the assembly of the host-gut microbiota,
it seems unlikely that chance and random microbial dispersion
could vastly explain the similarities of gutmicrobial compositions
across species (30). The fact that gut microbial communities of
mammals and fish cluster together suggests that specific pressures
to the intestinal environment shape the intestinal microbiota.
The earlier mentioned colonization cycle proposed by Robinson
et al. (22) already takes into account a broader perspective
of the environmental ecology including extra- and intra-host
factors, such as gut adaptation of the microbes, but only non-
fed larvae were analyzed. Taken together these observations, it
is highly probable that the intestinal microbiota is, at least partly,
modulated by the innate and adaptive host-immune system.

MICROBE-HOST INTERACTION IN
ZEBRAFISH INTESTINE: MOLECULAR
IMMUNE MECHANISMS

The host gut exerts selective pressure on the microbiota
(reviewed in the section above), which in turn influences
host immune responses. In Figure 1, we summarized the
host-microbe molecular pathways in the zebrafish gut cells.
Commensal gram-negative microbes produce low quantities
of lipopolysaccharide (LPS) which activate intestinal alkaline
phosphatase (Iap) (44). Iap is an endogenous protein located
in the apical intestinal epithelium and secretes surfactant-
like particles to the intestinal lumen (45). Activated Iap
counteracts LPS-associated intestinal inflammation, as quantified
by neutrophil infiltration in the gut of zebrafish larvae (37). In
mammals, after Toll like receptor (TLR)-microbial recognition
and Myd88 adaptor protein activation, a downstream signaling
cascade follows, including nuclear factor κ-light-chain-enhancer
of activated B cells (NF-κB) signal transduction to the nucleus
[reviewed in (46); and in (47)].

Recently, a TLR2-Myd88-dependent transcriptional feedback
mechanism was described upon microbial colonization by using
myd88 deficient zebrafish larvae (38). The proposed mechanism
involves microbial stimuli being recognized by TLR2 and partly
suppress myd88 but enabling enough myd88 transcriptional
activity to possibly induce protective mucin secretion in the
apical intestinal epithelium. However, downstream TLR-myd88
induction of mucin has only been demonstrated in ex-vivo mice
experiments (48) and not yet in zebrafish. In GF zebrafish, TLR2
cannot suppress myd88 expression and its elevated levels leads
to stimulation of activator protein 1 (AP-1) transcription factors,
which resulted in an overall increase in leukocytes (macrophages)
in the gut (38). Nonetheless, GF zebrafish did not show enhanced
inflammation as could be expected from AP-1 over-expression.
Thus, other mechanisms perhaps absent in larval stages–i.e.,
adaptive immunity- must be involved in myd88 regulation.
Knock-out myd88-/- juveniles or adult zebrafish could be used
to further investigate the role of adaptive immunity in regulating
microbe-host interaction.

In line with the observation that Myd88 is a key regulator of
host-microbe interaction in the gut of larval zebrafish, microbiota
determined secretory or absorptive differentiation of IECs via
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FIGURE 1 | Immuno-modulatory molecular pathways regarding the microbe-host interaction in the epithelium of the zebrafish intestine. We depicted the molecules

involved in the proliferation of epithelial cells and in the neutrophil influx as a host-responses to microbiota in the zebrafish gut. In black arrows activation processes, in

red inhibition processes. Genes are in italics and host-associated responses are underlined. Numbers correspond to articles proving such molecular interactions: 1:

Bates et al. (37); 2: Koch et al. (38); 3: Troll et al. (39) 4: Kanther et al. (40), 5: Murdoch et al. (41), 6: Cheesman et al. (42), and 7: Rolig et al. (43).

inhibiting Myd88-Notch signaling (39). Notch signaling is a
crucial mechanism for intestinal stem cell differentiation into
secretory intestinal cells in zebrafish (49). The study focused
more on the downstream Myd88 signaling rather than on the
recognition of themicrobes via TLRs. TLRs have been thoroughly
studied in zebrafish [reviewed in (50)] yet to our knowledge
there are no studies showing a direct link of feed components to
subsequent TLR-myd88-Notch signaling and increased secretory
fate of IECs (Goblet cell differentiation) via changes in the
microbiota. In the future, several TLR knock-out zebrafish could
be engineered to understand how specific feed components
and/or the microbiota trigger relevant molecular pathways.

Single microbial species can also influence the zebrafish
larval immune system. Gram-negative Pseudomonas aeruginosa
stimulatedNF-κB-dependent expression of innate immune genes
such as complement factor b (cfb) and serum amyloid a (saa)
which enhanced neutrophil influx (40). In a recent article,
saa-deficient zebrafish displayed aberrant neutrophil responses
to wounding but increased clearance of pathogenic bacteria.
Interestingly, saa function depended on microbial colonization
of GF individuals. To prove that saa produced in the gut
can systemically affect neutrophil recruitment, they created a
transgenic zebrafish expressing saa specifically in IECs by using
the cldn15la promoter fragment to drive mCherry fluorescence,

located in the IECs. Saa produced in the gut in response
to microbiota systemically prevented excessive inflammation
(tested by tail amputations) as well as reduced bactericidal
potential and neutrophil activation (41). Thus, besides the
aforementioned functions (38, 39), Myd88 activation after
TLR-microbial recognition orchestrates neutrophil migration to
inflamed tissues as previously shown by Kanther et al. (40) and
also pathogenic bacterial clearance in a saa-dependent manner
(41) in zebrafish larvae in response to microbiota.

Further molecular pathways have been studied by generating
specific gene mutations in zebrafish, such as axin1. Axin1
mutant zebrafish showed upregulated Wnt signaling and β-
catenin protein levels (42). It was previously shown in mice
that β-catenin accumulates in the cytoplasm and, at a threshold
concentration, translocates to the nucleus where (with cofactors
such as intestine-specific transcription factor Tcf4) it switches
on expression of pro-proliferative genes like c-myc or sox9
(51, 52). Induction of c-myc and sox9 in turn increases
IEC proliferation. Similarly, axin1 mutant zebrafish showed
increased cell proliferation in the intestine but not when axin1
mutant zebrafish were reared GF, indicating that the microbiota
triggers this increased cell proliferation, confirming earlier
results showing increased epithelial turn-over upon microbial
colonization (18). Interestingly, mono-association of resident
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bacteria Aeromonas veronii was enough to increase intestinal cell
proliferation in axin1mutant zebrafish by the same mechanisms:
upregulating Wnt signaling and β-catenin protein expression.
It can be concluded that the microbiota plays a role in the
proliferation of epithelial cells in the zebrafish gut during
microbial colonization via two mechanisms: TLR recognition
with Myd88 downstream signaling and Wnt signaling with
β-catenin protein accumulation and pro-proliferative gene
activation (42). Increased intestinal cell turnover in the
developing zebrafish larvae may be beneficial for the host to
renew damaged epithelial cells and to shed potentially pathogenic
bacteria attached to the epithelium.

To quantify host immune responses to multi-species rather
than mono-association, a species quantitative model was
created. Two variables were assessed in the zebrafish larvae
model: the neutrophil response to individual strains and the
absolute abundances of community members. Specific microbes,
regardless of their relative abundances, played a major role
in the neutrophil influx. GF zebrafish were colonized with
different species (Aeromonas, Vibrio, and Shewanella) and
neutrophil influx into the gut was investigated. Shewanella
partly inhibited the Vibrio induction of neutrophil influx in
the gut via cell-free supernatant (CFS). However, Shewanella
CFS did not alter neutrophil influx in combination with
Aeromonas mono-association (53). This study stresses the
fact that mono-association experiments may be important to
understand molecular mechanisms, however they may not
reflect the in vivo situation where microbial species affect each
other. Here, the authors used zebrafish larvae and neutrophil
influx as the immune parameter, it would be interesting to
see effects on other immune mediators, such as eosinophils
which are abundantly present in the zebrafish gut. Although
the knowledge of immunomodulatory factors produced by fish
gut microbiota is limited, a recent study discovered a unique
protein AimA (“Aeromonas immune modulator”) secreted by
Aeromonas veronii, which benefit both host and microbe. While
AimA protects the host by preventing chemically and bacterially-
induced intestinal inflammation, it protects A. veronii from
host immune response and enhances colonization (43). Further
studies are needed to understand how specific bacterial species
and their associated secreted molecules are involved in overall
immune modulation in the zebrafish intestine and systemically.
For further reading on the modulation of innate immunity to
commensal bacteria, we refer to a recently published review of
Murdoch and Rawls (54) and for a more extensive review on
hematopoiesis in the developing zebrafish to the review of Musad
and coworkers (55).

IMPACT OF PREBIOTICS AND
PROBIOTICS ON THE ZEBRAFISH
MICROBIOTA AND GUT IMMUNITY

In their natural environment, adult zebrafish eat zooplankton
and insects. Analysis of the zebrafish gut content also revealed
the presence of phytoplankton, spores and filamentous algae,
among others [reviewed in (56)]. There is not a standard diet

for zebrafish in captivity and feeding practices include feeding
a mixture of live feeds such as rotifers, ciliates, Artemia nauplii
and formulated dry feeds (57). Supplementary ingredients have
been investigated in several commercially relevant fish species
in order to increase growth and control aquaculture related
diseases (58). More specifically, fish microbial communities
may influence the immune system and decrease aquaculture-
related diseases [reviewed in (24)]. An overall summary of key
operational taxonomic units (OTUs) in various tissues (skin, gut,
gills, and digesta) have been associated with fish diseases and
infections compared to the wild-type individuals [reviewed in
(59)]. The use of zebrafish as experimental model to develop
novel feeds for farmed fish has gained interest, especially for
the development of prebiotics and probiotics as immune and
microbiomemodulators [reviewed in (60)]. Althoughmost of the
prebiotics and probiotics assure benefits for the host, a careful
assessment of their effects remains important, as shown for effects
of human probiotics uncovering problematic research design,
incomplete reporting, lack of transparency or under-reported
safety were described [reviewed in (61)]. In the next section,
we review the current literature on the effects of prebiotics and
probiotics on the immune system and microbiota of zebrafish.

PREBIOTICS

Prebiotics can be defined as non-digestible feed ingredients
that have a beneficial effect toward the host by selectively
stimulating the growth or the activity of commensal gut
bacteria and thus improving host health [reviewed in (62)].
Prebiotics most often consist of small carbohydrate chains
that are commercially available as oligosaccharides of glucose
(like β-glucans), galactose, fructose, or mannose. The use of
prebiotics as immuno-stimulants in farmed fish feed has been
reviewed elsewhere (63), however the effect of prebiotics on
zebrafish (gut) health and on microbiota composition needs
further examination. We summarized such studies in Table 1.
Most of the studies have been performed in larval zebrafish
and only very few studies have been performed in adults. The
most employed prebiotics in zebrafish research were fucoidans
(sulphated polysaccharides mainly present in brown algae
and brown seaweed), β-glucans (β-D-glucose polysaccharides
extracted from cell walls of bacteria and fungi) and sometimes
others, such as galactooligosaccharides. It is of note that not
much is known about the modulation of the microbiota by
prebiotics since most of the reviewed studies only investigated
their immune stimulatory effects.

Fucoidans extracted from several brown algae; Eklonia cava
(64), Chnoospora minima (66), and Turbinaria ornata (65) were
administrated to zebrafish larvae in the water. In all three studies,
larvae exposed to fucoidans displayed reduced levels of reactive
oxygen species (ROS), inducible nitric oxygen synthase (iNOS)
and improved cell viability in whole larvae after LPS challenge
(64–66). However, in these studies the candidate prebiotics
were diluted in the water when the embryos were 8 h post-
fertilization. Since the mouth of the zebrafish embryo does not
open until 3 dpf and the complete digestive tract is not fully
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TABLE 1 | Summary of prebiotics, probiotics, and synbiont studies performed in zebrafish regarding immunity and microbiota.

Specie(s)/strain(s) Zebrafish age Microbiota composition Immune-modulatory effects Other relevant parameters References

Prebiotic Fucoidan from Eklonia cava Embryos (not specified) – – Reduced the levels of ROS and NO after

challenge with LPS and tail cutting

– (64)

Prebiotic Fucoidan from Turbinaria

ornata

3 dpf – – Reduced LPS-induced levels of COX2, iNOS,

and ROS.

−Improved cell viability (65)

Prebiotic Fucoidan from Chnoospora

minima

3 dpf – – Reduced LPS-induced levels of COX2, iNOS,

and ROS.

−Improved cell viability (66)

Prebiotic β-glucan from oats 5 dpf – – Upregulation of tnfa, il-1β, il10, il12, defb1,

lyz, c-rel.

−Increased survival after E. tarda

challenge.

(67)

Prebiotic β-glucan 4 hpf−6dpf – – Upregulation of tnfa, mpo, trf, lyz −Increased survival after Vibrio

anguillarum challenge

(68)

Prebiotic Fucoidan from Cladosiphon

okamuranus

6–9 dpf and adult zebrafish –Decreased E coli and favored

Rhizobiaceae and

Burkholderiaceae in adults gut

but not overall larvae.

– Reduction of il-1β but not cxcl8, il10 nor tnfb

in the zebrafish adult gut

−Increase of il-1β, il10, tnfb and mmp9 in

overall larvae.

– Ikeda-

Ohtsubo

et al. (in this

issue)

Prebiotic Galactooligosaccharide

supplemented in diet (0.5,

1, and 2%)

Adult zebrafish (8 weeks

feeding)

– –Upregulation of tnfa and lyz

−Increase in total

immunoglobulin concentration.

– (69)

Probiotic 2 yeast species:

Debaryomyces (Db) and

Pseudozyma (Ps)

2–3 dpf yeast exposure, gut

sampling at 14 dpf

−Core microbiota differed from

controls.

–Reduced Bacteroidetes

abundance.

–Db increased species richness.

–Db increased abundance of

Pediococcus and Lactococcus.

– – (70)

Probiotic Lactobacillus casei BL23 From 3 to 25 dpf – –Upregulated expression of il-1β, C3a and il-10

after 8 or 24 h post-challenge with A.

hydrophila.

−Increased survival after A.

hydrophila challenge

(71)

Probiotic Yeasts: Yarrowia lipolytica

242 (Yl242) and

Debaryomyces hansenii 97

(Dh97)

At 4 dpf, 2 h exposure –Germ-free (GF) larvae and

conventionally raised (CONV)

larvae.

–Upregulation of il-1β, c3, tnfa, mpx, and il10 in

CONV larvae after V. anguillarum challenge

−Pre-treatment with Dh97 and Yl242

prevented gene upregulation in CONV and

GF larvae.

–Increased survival of CONV and

GF larvae due to yeast after

challenge with V. anguillarum (GF

higher mortality than CONV).

(72)

Probiotic Lactobacillus plantarum

ST-III (LAB) and bile salt

hydrolase (BSH). Exposure

to Triclosan (TCS) alone or

with LAB (TL) or BSH (TB).

From 4 hpf to 90 dpf −Gut microbiota clustered: LAB

> Control > TL and BSH > TB

> TCS.

–TCS shifted the microbiota and

when LAB or BSH co-exposed

microbiota resembled more

to controls.

–LAB and TL reduced malonaldehyde in the

gut.

–TCS upregulated NF-kB and il-1β, tnfa

expression.

–TCS increased CD4+T cells in the lamina

propria.

–TCS thinned intestinal mucosa, destructed

epithelia and increased goblet cells.

–TCS induced fibrosis, increased

lipid droplet, increased

triglycerides, and total cholesterol

concentrations in the liver

compared to controls and LAB/TL

treated fish.

(73)

Probiotic 15 yeast strains At 4 dpf, 2 h exposure – –Larvae after V. anguillarum displayed more

neutrophils outside the caudal hematopoietic

tissue

–All yeast except Mv15 and Csp9

increased survival after V.

anguillarum challenge.

(74)

(Continued)
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TABLE 1 | Continued

Specie(s)/strain(s) Zebrafish age Microbiota composition Immune-modulatory effects Other relevant parameters References

Probiotic L. plantarum WCFS1 and

NA7 and L. fermentum

ATCC9338, NA4, and NA6.

At 5 dpf, 24 h exposure GF larvae –NA4 exposure prior to TNBS challenge

lowered levels trfa and il-1β

– Il-10 expression was higher in larvae exposed

to NA4

– (75)

Probiotic 37 commensal or probiotic

Gram-positive and

Gram-negative bacteria

6–9 dpf – – –Increased survival by V.

parahaemolyticus, E. coli ED1a-sm

and E. coli MG1655 F’ upon E.

ictaluri infection.

(76)

Probiotic Lactobacillus rhamnosus 96 hfp, 6 and 8 dpf –Increased the rel. abundance of

Firmicutes

–Enlarged enterocytes and microvilli on the

apical surface of the epithelium.

–Increased total length and wet

weight at 8 dpf.

(77)

Probiotic B. coagulans, L. plantarum,

L. rhamnosus,

Streptococcus

thermophilus,

Bifidobacterium infantis.

Adult zebrafish (28 days

feeding)

– –B. coagulans and L. plantarum reduced the

number of Masts cells in the gut after A.

hydrophila challenge.

–B. coagulans and L. plantarum reduced

expression of tnfa and il10 and increased il-1β

in the gut.

–B. coagulans and L. plantarum

reduced mortality after A.

hydrophila challenge.

(78)

Probiotic Lactobacillus plantarum Adult zebrafish (30 days

feeing)

–L. plantarum clustered gut

microbiota independently

–Reduced rel. abundance of

Vibrionaceae,

Pseudoalteromonadaceae, and

Leuconostrocaceae and

increased Lactobacillaceae,

Stenotrophomonas,

and Catenibacterium.

–Not clear effect of L. plantarum –Upregulated canonical pathways

related with energy metabolism

and vitamin biosynthesis.

(79)

Probiotic Lactobacillus rhamnosus Adult fish (10 days feeding) – –Upregulated expression of il1b, tnfa, and

becn1 in the gut.

– (80)

Probiotic 8 probiotic strains were

lyophilized and mixed with a

commercial diet

Adult fish (30 days feeding) – –Downregulated casp4 and baxa and

upregulated bcl2a in the gut.

– Upregulated il-1β, tnfa, myd88, il10, casp1,

nos2a, tgfb1a, nfkb, tlr1, tlr2, tlr3, and tlr9 (also

in protein level, expect for Tlr2).

–Upregulated cnr1/2 and abhd4

and downregulated faah and mgll

in the gut compared to controls.

(81)

Probiotic Bacillus amyloliquefaciens Adult fish (30 days feeding) – –Upregulated expression of il-1β, il6, il21, tnfa,

lyspzyme, tlr1, tlr3, and tlr4.

–Increased survival after A.

hydrophila and S. agalactiae

challenges.

(82)

Probiotic E. coli 40, E. coli Nissle, and

E. coli MG 1655 1ptsG.

Adult zebrafish –E. coli 40 and E. coli Nissle decreased mucin

found in water after V. cholerae O395 or V.

cholerae El Tor strain N16961 challenge.

– (83)

Probiotic &

prebiotic

Lactobacillus casei BL23

and

exopolysaccharide-protein

complex (EPSP)

3–12 dpf –Microbiota did not change due

to L. casei BL23.

–L. casei upregulated tnfa, il-1β, il-10, and Saa

after 24 h infection with A. veronii but

downregulated after 48 h.

ESPS increased tlr1, tlr2, il10, tnfa expression,

and decreased il-1β exp.

–L. casei BL23 and EPSP

increased survival after Aeromonas

veronii infection.

(84)

Probiotic &

prebiotic

Ecklonia cava (EC)

Celluclast enzymatic EC

(ECC)

100% ethanol extract

EC (ECE).

Adult zebrafish (21 days

feeding)

–E. cava induced L. brevis, L.

pentosus and L. plantarum

growth.

–EC combined with L. plantarum increased

iNOS and COX2 in the gut after E. tarda

challenge.

–EC, ECC, and ECE diminished

colony counts of E. tarda, S. iniae,

and V. harveyi.

EC reduced mortality after E.

tarda challenge

(85)
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developed until 6 dpf (12) such studies do not prove a prebiotic
effect on gut immunity. Preferably, zebrafish larvae with a fully
developed digestive tract (6 dpf or older) are employed to study
such interactions. Furthermore, prebiotics should be tested at
physiologically relevant concentrations. Testing a prebiotic in
zebrafish larvae may uncover a prebiotic function but often the
overall goal would be to formulate novel diets containing the
optimal concentration of prebiotic. For this aim, juvenile or adult
zebrafish would be more suitable. We investigated the effect of
fucoidan derived from the brown alga Cladosiphon okamuranus
on microbiota composition in whole larvae (water exposure)
and in adult zebrafish gut (feeding with flakes). In the gut of
adult zebrafish, gene expression of il-1β was reduced and the
dominant Escherichia coli (Proteobacteria) decreased in favor of
Rhizobiaceae and Burkholderiaceae after feeding with fucoidan,
while in larvae il-1β, il-10, tnfb, and mmp9 increased but no
microbial changes were observed (Ikeda-Ohtsubo, this issue).

Differently from fucoidans, β-glucans can act as
immunostimulators in zebrafish. Beta-glucans from oats,
upregulated gene expression of tnfa, il-1β, il-10, il-12, defb1, lyz,
and c-rel in a dose-dependent manner in 5 dpf whole zebrafish
larvae (67). In a similar study, β-glucan exposure from 4 hpf
until 6 dpf upregulated tnfa, mpo, tlf, and lyz gene expression
(68). In both studies, β-glucan administration in the water
hampers its uptake quantification by the fish and again the
exposure of very young larvae probably does not lead to gut-
related effects. Oligosaccharides such as galactooligosaccharides
(GOS) and fructooligosaccharides (FOS) are frequently used as
prebiotics in agriculture and human infant nutrition to boost
health via increased production of suggested beneficial bacterial
fermentation products (63). Adult zebrafish fed with GOS for 8
weeks at 0.5, 1, and 2% inclusion levels displayed upregulation of
tnfa and lyz expression and an increase in total immunoglobulins
in the whole zebrafish (69). However, no gut specific read-outs
were assessed.

It is clear that prebiotics can act on the immune system in a
specific manner depending on their source of origin. Fucoidans
can decrease inflammation markers whereas β-glucans and
GOS increase gene expression of pro-inflammatory cytokines.
Despite the promising outcomes, the vast majority of studies
exposed undeveloped larvae to prebiotics which are unable
to ingest the additive via free feeding. Prebiotics research
should carefully evaluate gut health because is the organ where
feed can potentially modulate the microbiota and the host
immune system. If such candidate prebiotics are included within
dry pellets and administrated to fish slightly before satiation
(ensuring fish eat all the pellets), it is feasible to estimate the
prebiotic gut levels and assess effects on gut microbiota and
immunity with more clarity.

Several methods not yet extensively employed in the
previously mentioned prebiotic studies may also be suitable for
prebiotics gut health research in zebrafish. Firstly, histology and
immunohistochemistry staining is needed to understand the
immuno-modulatory effects in the gut tissue (i.e., disruption
of the normal gut architecture). Transgenic zebrafish could
potentially help to clarify which subpopulations of immune
cells infiltrate the gut using fluorescently-activated cell sorting

(FACS) and imaging. Furthermore, cell sorting of these sub-
populations together with transcriptomics would depict the
real effect of the prebiotic. Omics technologies (genomics,
transcriptomics, proteomics, etc.) play an increasing important
role in understanding the immune effects of aqua-feeds [reviewed
in (86)] and omics-based read-outs should become more popular
as their costs decrease.

Comparing the limited number of studies performed on
zebrafish with a much larger number of studies performed in
aquaculture species confirms that supplementation of β-glucans
to feed of Atlantic salmon, trout or sea bass increases immune
activity [reviewed in (87)] and trained immunity (88). However,
only a limited number of studies have been performed on GOS
supplementation. Dietary supplementation to Atlantic salmon
of GOS at 1 g/kg feed for 4 months did not show effects on
reactive oxygen species (ROS) production or lysozyme activity.
Research on the use of seaweed is increasing, for example
testing 10% inclusion levels of Laminaria digitata in feed of
Atlantic salmon (89). The dietary seaweed improved chemokine-
mediated signaling but the study only assessed transcriptional
responses after LPS challenge so further research into the health
effects of elevated or reduced gene expression is warranted.
This last example nicely supports the use of zebrafish model,
not to replace testing in aquaculture target species, but to
prescreen feed components and further dissect the mechanism
of action by live imaging and assessment of health parameters
for prolonged periods, something difficult to achieve in large and
costly aquaculture species.

PROBIOTICS

Already in 1907, Elie Metchnikoff related the use of probiotics
to elongation of life expectancy. For the purpose of this review
we define probiotics as a live or inactivated microorganism,
such as bacterium or yeast, that when administrated via feed
or water, confers a benefit to the host, such as improved
disease resistance or enhanced immune responses [adapted from
(90, 91)]. Probiotics can influence the health of the host in
several ways: secreting secondary metabolites that inhibit growth
of microbial pathogens and/or directly stimulating immune
responses to downregulate gut inflammation (92). Here we
focused on the probiotic studies in zebrafish concerning (gut)
immune and microbiota modulation (summarized in Table 1).

To assess potential health benefits of live probiotics it is
important to understand their optimal environment inside the
host (oxygen levels, pH, etc.) and their colonization route.
Probiotic-host interaction was addressed by a model of oro-
intestinal pathogen colonization in GF zebrafish (76). Firstly, 6
dpf zebrafish were exposed by immersion to 25 potential enteric
fish pathogens after which mortality was recorded during 3
days. Edwardsiella ictaluri caused the highest larvae mortality
and was further selected to challenge the fish. Then, larvae
were pre-colonized with single strains of 37 possible probiotics
prior to E. ictaluri challenge. From this extensive screening,
Vibrio parahaemolyticus, E. coli ED1a-sm and E. coli MG1655
F’ provided a significant increase in survival upon E. ictaluri
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infection. V. parahaemolyticus protected the host by inhibiting
E. ictaluri growth whereas E. coli protected via specific adhesion
factors, such as F pili involved in biofilm and conjugation
formations offering niches to other probiotic bacteria in the
host (76). It is of note that zebrafish gills, although they are
active in gas exchange 2 weeks after fertilization (93), provide
a potential portal of entry for pathogens. Regretfully, gills
were not included in the aforementioned study. Interestingly,
in the same study, Vibrio parahaemolyticus was assessed as a
possible probiotic whereas Vibrio ichthyoenteri was considered
as a possible pathogen. The majority of the microbiota studies
associate immune responses to taxonomic levels such as genera
or families (i.e., Vibrio spp.) rather than species or strains. As
a consequence, there is a generalization of an entire genus to
a functions that could be species or even strain-specific. Such
widely used generalizations may come from the difficulty to
generate amplicons that are long enough to discriminate between
closely related organisms. Besides, transcriptomics and shot gun
approaches are preferred over 16S rRNA gene analysis to depict
the active microbiota because they more informative regarding
the fish health status (21). Adult zebrafish were also used to
test probiotics as a model for human probiotic consumption.
Adult zebrafish were exposed to two E. coli strains (Nissle and
MG 1655 1ptsG) and challenged with species of Vibrio choleae
(strain El Tor). E. coli spp. decreased the mucin content found
in the tank water, indicator of diarrhea (83) although these
mucins could perhaps also result from skin shedding. It might be
interesting to assess whether these E. coli spp. increase secretory
cell development and therefore mucus secretion via reduction of
Myd88-Notch signaling as previously reviewed (39). In addition,
while in humans administration of bacteria via a solutions orally
ingested is an efficient way of ensuring ingestion, addition of
probiotics to the water may not guarantee uptake by fish and
may affect overall fish mucosa (skin, gills, gut) and not only
uptake in the gut. Besides, the environment of the fish gut is more
aerobic than the human gut environment (21) and lactic acid
bacteria may be outcompeted by other bacteria in these aerobic
conditions. This rationale may explain why human probiotics
(Lactobacillus spp.) tested in zebrafish by immersion did not
confer protection against E. ictaluri infection (76). Several studies
reported Lactic Acid Bacteria (LAB) as good probiotic candidates
due to their ability to withstand and adhere to the gut, their lactic
acid production which inhibits the growth of pathogenic bacteria
and their strengthening of the mucosal barrier (94). Zebrafish
immersed with Lactobacillus casei BL23 from 3-25 dpf displayed
an increased survival compared to controls after an immersion
challenge with Aeromonas hydrophila. Gut gene expression of
il-1β , C3a, and il-10 was upregulated after 8 and 24 h after A.
hydrophila challenge compared to controls (71). Interestingly,
potential probiotics from the genera Lactobacillus modulated
gene regulation in a strain-specific fashion. As a matter of fact,
GF larvae immersedwith Lactobacillus fermentumNA4 displayed
an increased il-10 expression and a decreased il-1β and tnfa
expression after chemically-induced inflammation compared
to controls. However, in the same study, larvae immersed
with several strains of Lactobacillus plantarum (WCFS1 and
NA7] or other Lactobacillus fermentum strains (ATCC9338 and

NA6) did not show these differences in gene expression (75).
Dissimilarities in gene expression among the aforementioned
studies (71, 75) could be due to fish age (3–25 vs. 7 dpf),
tissue analyzed (gut vs. whole larvae) challenge applied (live
pathogen vs. chemical) and the specific Lactobacillus strain used
as a probiotic candidate. Bacillus amyloquefaciens supplemented
twice a day for 30 days in a commercial diet upregulated il-
1β, il-6, il-21 tnfa, lysozyme, tlr1, tlr3. and tlr4 expression in
adult zebrafish whole body and increased survival during A.
hydrophila and S. agalactiae challenge (82). Upregulation of
gene expression appeared related to enhanced innate immunity
although no other immune parameters were taken into account.
In another study in adult zebrafish, a commercial diet was
supplemented with multiple lyophilized probiotic strains for 30
days. The probiotic mix upregulated il-1β, tnfa, myd88, il-10,
casp1, nos2a, tgfb1a, nfkb, tlr1, tlr2, tlr3, and tlr9 expression in
the gut. Furthermore, the probiotic mix increased the protein
levels encoded by all the upregulated genes (except for Tlr2
protein) (81). On the one hand, certain bacteria of the probiotic
mix may have inhibited Tlr2, which in turn could have partly
suppressed myd88 (38). On the other hand, other bacteria
of the probiotic mix may have enhanced expression of other
TLRs that upregulated myd88 and the overall Myd88-balance
orchestrated innate immune responses. As previously reviewed,
microbial species can influence host immunity irrespective of
their abundance (53) and when usingmix of probiotics the effects
of each individual species are harder to disentangle. Other studies
using LAB as probiotics did not only examined gene expression
but also microbiota (73, 77, 79) and histological changes (77, 78)
in the zebrafish gut (Table 1). Some studies investigated the
potential of yeast as a probiotic for zebrafish. GF and CONV
zebrafish larvae were immersed from 2–3 dpf in solutions of
two yeasts after which gut microbiota were sampled at 14
dpf (70). Although microbial changes were observed, immune-
related outcomes where not measured so the probiotic effect of
the yeasts in this study remains undefined. In another study,
4 dpf zebrafish were exposed to 15 fluorescently labeled yeast
strains for 2 h prior to Vibro anguillarum challenge (74). Most
of the yeast strains conferred increased survival after challenge.
In a later experiment, the same group further studied two
of the yeast strains in GF and CONV larvae using a similar
set-up. Exposure to either yeast strain significantly increased
survival in GF and CONV larvae after V. anguillarum challenge
(72). CONV zebrafish challenged with V. anguillarum displayed
an upregulation of il-1β, c3, tnfa, mpx, and il-10 expression.
Pre-treatment with either yeast strain prevented such gene
upregulation in CONV and GF larvae, indicating that these yeast
strains might prevent or reduce the effects ofV. anguillarum (72).

Zebrafish have also been employed for synbiotic studies
which typically combine the use of prebiotics and probiotics.
Lactobacillus casei BL23 and an exopolysaccharide complex
(ESPS) were studied in combination in GF and CONV larvae
from 3 to 12 dpf. L. casei exposure upregulated tnfa, il-1β, il-
10, and saa expression after 24 h in a challenge with Aeromonas
veronii and downregulated expression of these genes after a 48 h
challenge. It is of note that the ESPS alone upregulated tlr1,
tlr2, il-10, and tnfa and downregulated il-1β after 24 h challenge.
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FIGURE 2 | Overview of the interaction of pre- and probiotics, immune system and microbiota in the zebrafish intestine. We summarized the interactions of microbiota

and feed components, immune system and feed components and microbiota and immune system. We highlighted the questions that still remain unsolved in the field.

Synbiotically, L. casei BL23 and EPSP improved survival dose-
dependently after A. veronii challenge (84). The combined
supplementation of E. cava enzymatic digest, with enhanced
biological activity, as prebiotic together with L. plantarum as a
probiotic in adult zebrafish for 21 days reduced the level of iNOS
and cyclooxygenase 2 (cox2) in the gut. Moreover, when prebiotics
and probiotics were administrated together, they increased
survival compared to L. plantarum-treated fish alone after a
challenge with E. tarda (85). Interestingly these studies suggest
that certain extracts and/or biologically active compounds rather
than the whole prebiotic may cause immune-modulation.

A large number of studies (co)exposed potential prebiotics
and/or probiotics to zebrafish to improve their immune
condition via microbial modulation (Figure 2). Remarkably,
in most of these studies, gene expression was assumed a
conclusive immunological read-out. Apart from the fact that gene
expression does not always translate to protein functionality,
often pro- and anti-inflammatory cytokines are upregulated or
downregulated depending on the dynamics and the timing of
the response. The gene expression may reflect the balance in the
host during an immune response: specific and strong enough to

fight potentially pathogenic bacteria but at the same time able
to tolerate commensal host microbiota (95). This balance is also
dependent on different cell types that work in concert to prevent
excessive damage to the host when acting against an invading
pathogen or ongoing inflammation. We need to understand the
role and presence of different immune cell types that are involved
in the different responses in much more detail before we can
try to modulate the response to the benefit of the host. To this
end, the zebrafish remains the ideal candidate model organism.
To date, more studies could have made use of the unique
tools in zebrafish such as live imaging of different transgenic
reporter zebrafish (cytokines as well as immune cell populations)
to get a much broader understanding of the complex dynamic
interactions of host-feed-microbe interactions.

CONCLUDING REMARKS

In this review we focused on the zebrafish as an animal
model to study the effect of feed on host-microbe-immune
interactions (summarized in Figure 2). Zebrafish are now
widely used as models to study fundamental and evolutionary
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processes that might uncover pathways relevant for both fish and
mammals. The studies on microbial composition development
summarized in this review reveal that although the gut microbial
composition is dependent on salinity, trophic level and host
phylogeny, mammalian, fish and insect gut microbiota still
cluster together and separately from environmental samples.
Thus, although mammals and fish live in distinct environments
and clearly have different physiology, gene expression and
regulation of gene expression in the gut is highly similar.
IEC transcriptional profiles are more similar between species
than responses of different cell types of the same species.
Therefore, experimentation with zebrafish seems suitable to
elucidate conserved molecular mechanisms.

Using zebrafish as a model for aquaculture species is of
interest. Eighty percent of farmed fish are other cyprinids and
therefore close relatives. We argue that using the zebrafish as
a model for aquaculture species brings several advantages yet
may never fully replace studies performed in the target species
for validation. Nevertheless, using zebrafish as a pre-screen
model to guide studies in aquaculture species might contribute
to elucidate mechanisms underlying feed and host-microbe-
immune interactions.

Recently, exiting new research using in vivo mice models
has shown that the microbial community can influence the
severity of viral infections (96, 97). Moreover, in vitro data using
RAW264.7 cells showed antiviral activity of several Lactobacillus
strains to murine norovirus (MNV) infection through IFN-β
upregulation (98). Currently, it is unknown whether microbes
can also alter fish-specific viral infectivity. This is an exciting new
avenue of research that might lead to novel vaccination strategies,
combining virus-targeting vaccines with prebiotic or probiotic
treatment to change the microbiota as well as target the virus
itself. A fundamental field in which zebrafish are most probably
will contribute due to its unique advantages.

The studies published in the field using zebrafish will continue
to increase and by combining existing technologies (omics,

immunohistochemistry, FACS, in vivo imaging) or by emerging
novel technology knowledge gaps will surely be filled. For
future experiments it would greatly benefit our understanding
if more holistic approaches would be taken. We need to
combine read-out parameters such as gene expression, survival
after challenges, gut architecture, immune cell recruitment,
microbiota composition, metabolite production and behavioral
data within each experiment to provide a broader picture
of the consequences of certain treatments on the health of
the fish. Only by carefully determining cause and effect by
interrogating possible molecular pathways through gene editing
we can provide a solid rationale for the design of novel
immunomodulatory strategies.
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