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Abstract 10 
Microorganisms are Nature’s little engineers of a remarkable array of bioactive small molecules that represent 11 
most of our new drugs. The wealth of genomic and metagenomic sequence data generated in the last decade 12 
has shown that the majority of novel biosynthetic gene clusters (BGCs) is identified from cultivation-13 
independent studies, which has led to a strong expansion of the number of microbial taxa known to harbour 14 
BGCs. The large size and repeat sequences of BGCs remain a bioinformatic challenge, but newly developed 15 
software tools have been created to overcome these issues and are paramount to identify and select the most 16 
promising BGCs for further research and exploitation. While heterologous expression of BGCs has been the 17 
greatest challenge until now, a growing number of polyketide synthase (PKS) and non-ribosomal peptide 18 
synthetase (NRPS)-encoding gene clusters have been cloned and expressed in bacteria and fungi based on 19 
techniques that mostly rely on homologous recombination. Finally, combining ecological insights with state-20 
of-the-art computation and molecular methodologies will allow for further comprehension and exploitation of 21 
microbial specialized metabolites. 22 
 23 
Introduction 24 

Microorganisms are unparalleled with respect to the chemical diversity of specialized metabolites they 25 
produce. These encompass many chemical classes including polyketides (PKs), non-ribosomal peptides 26 
(NRPs), ribosomally synthesized and post translationally modified peptides (RiPPs), terpenes, saccharides and 27 
alkaloids [1]. Until the 1950s the majority of microbial metabolites were overlooked or merely regarded as 28 
waste products from primary metabolism. In contrast to a general set of primary metabolites, specialized 29 
metabolites are often specific to a restricted taxonomic range where they facilitate dedicated physiological, 30 
social or predatory functions [2]. Moreover, such metabolites have been found to possess a wide range of 31 
biological activities, making them useful for the development of antimicrobials, anticancer agents and 32 
immunosuppressants for pharmaceutical, agricultural and food manufacturing applications [3–6]. 33 

The majority of specialized metabolites result from metabolic pathways, each of which encoded by a 34 
suite of genes at the same chromosomal locus, generally known as biosynthetic gene clusters (BGCs). These 35 
BGCs are frequently “silent” in common laboratory media, whereas their expression is triggered by specific 36 
environmental cues [7–9]. Recent developments in genomics and computational biology, hand in hand with a 37 
vastly increasing number of sequenced metagenomes and metatranscriptomes, have led to the discovery of 38 
thousands of BGCs [10,11]. 39 

Modular assembly lines such as PK synthases (PKS) and NRP synthetases (NRPS) constitute two of 40 
the most important and diverse classes of specialized metabolites that can theoretically code for a near infinite 41 
diversity of unique molecular architectures [12–14]. Recent analyses based on retro-biosynthesis, i.e. the 42 
computational breakdown of PK and NRP chemical molecules and reversal of their assembly lines to predict 43 
their parent PKS/NRPS BGCs, allow linking BGCs from publicly available databases to known natural products 44 
and define clusters encoding new products. Such efforts have shown that thousands of BGCs are likely to be 45 
responsible for the production of novel molecules [10]. 46 

To prevent replication of previous research and yet discover specialized metabolites from microbes 47 
with novel applicable biological activities, it is important to shift attention to environments and microbial phyla 48 
that have so far been largely neglected. Moreover, advanced bioinformatics analyses must be applied that can 49 
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quickly assess the novelty of the gene clusters found and link them to predicted chemical structures and 50 
biological activities. 51 
 In this opinion paper, we highlight state-of-the-art developments regarding discovery, 52 
characterization and exploitation of microbial specialized metabolites, with a focus on PKS and NRPS. In 53 
addition, we identify environments, bioinformatics approaches and expression strategies that we consider 54 
most promising for future development of the field [Figure 1]. 55 
 56 
 57 

 58 
 59 
Figure 1. Approach for specialized metabolite discovery. 60 
Microbial specialized metabolites are of great value, and in order to boost their discovery, exploration of scarcely 61 
screened environments is key. Technological advances in sampling tools and techniques play an important role in 62 
allowing researchers to access such locations.. At the same time, governmental constraints also dictate which regions 63 
will be favoured for exploration and exploitation of microbial bioactives.  64 
Newly developed computational methodologies enable mining of genomic and metagenomic data for detection of 65 
potentially new classes of biosynthetic gene clusters (BGCs).These algorithms are optimized to conduct identification 66 
of BGCs and predict their chemical structures, and are crucial to identify and select the most promising BGCs for 67 
further research and exploitation. 68 
The next step in unlocking and systematically exploiting these BGCs involves their controlled expression. Large DNA  69 
molecule manipulation involves assembly and cloning methods often based on homologous recombination 70 
mechanisms in both yeast and bacteria. Furthermore, advances in synthetic biology allowing customisation of 71 
transcriptional units’ expression stoichiometry for production of complex chemicals,  play an important role in the 72 
creation of automated production platforms. 73 
 74 
 75 
Environmental sources of specialized metabolites 76 

Nature has provided mankind with numerous bioactive compounds for medical purposes for thousands 77 
of years, and even in modern times most drugs are derived from natural sources [15]. Bacteria and fungi that 78 
are responsible for the production of small bioactive molecules have been found in widely diverse 79 
environmental niches, such as soil, sediment and aquatic environments, either as free-living microorganisms 80 
or in symbiosis with plants and animals [15,16]. Soil-dwelling cultivable Actinobacteria, and members of the 81 
genus Streptomyces in particular, have been in the limelight as proliferous sources of specialized bioactive 82 
metabolites, as witnessed by the discoveries of the antibiotics actinomycin, streptomycin and chloramphenicol 83 
in the 1940s, and the antiparasitic agent ivermectin [17–19]. Also soil-derived isolates from other bacterial 84 
genera, such as Bacillus [20] and Pseudomonas [12,21] are traditionally rich sources of specialized 85 



metabolites. Interestingly, there appear to be important differences in biosynthetic potential between 86 
taxonomic groups within these genera, according to their ecological specializations [5,22]. Fungi, historically 87 
also mainly isolated from soils, represent a sometimes overlooked, but prolific source of bioactive molecules 88 
(e.g. antibiotics such as penicillin) [5,23]. A recently published study explored the environmental factors that 89 
drive changes in PKS and NRPS encoding BGC diversity across geographically distinct soil environments, and 90 
found changes in biosynthetic domain composition to correlate most consistently with variations in 91 
latitude[24]. 92 

However, cultivation-independent methods have shown that the uncultivated majority of the 93 
microorganisms encode many more BGCs (quantitatively and qualitatively) than the ones we know from 94 
isolates, a terra incognita with major potential for applications [4,5]. In addition, the use of these cultivation-95 
independent methods shows that the traditional focus on Actinobacteria needs a shift towards other 96 
microorganisms such as marine fungi [25], Cyanobacteria[26,27], Proteobacteria[28] and the novel candidate 97 
phylum Tectomicrobia [29,30]. For example, the latter, represented by a newly discovered uncultivated 98 
marine sponge symbiont genus Candidatus Entotheonella which has the genetic capacity to produce over 40 99 
natural compounds and is widely distributed in taxonomically diverse sponges [30]. Other microbial taxa 100 
including Clostridium, Planctomycetes, Burkholderia and Xenorhabdus/Photorhabdus are also emerging 101 
important targets with high biosynthetic potential [5,22].  102 

While the terrestrial environment is by no means exhausted of novel bioactive molecules, a recent 103 
large metagenomics study of the ocean water revealed that a stunning 90% of the genes detected at a depth 104 
of 600 m did not have a match in public databases [31]. Although the ocean metagenome appeared to be rich 105 
in BGCs, we propose that the majority of BGCs in ocean water remains undetected as only the fraction <3 µm 106 
was considered in the aforementioned study, excluding small particles that are colonised by a community of 107 
microorganisms. These in turn are more likely to produce specialized metabolites of interest required for short-108 
range molecular interactions. The same may be expected for marine sediments and biofilms (e.g., on 109 
macroalgae) that have been poorly investigated for their potential to produce specialized metabolites [32,33]. 110 
In addition, marine invertebrates display species-specific symbioses with microorganisms facilitated by unique 111 
metabolites, some of which may be valuable bioactive small molecules [34]. Particularly sponges, the biomass 112 
of which may be almost equally divided between host and symbionts, have been identified as one of the most 113 
promising natural source for future antibiotics [35,36]. 114 

In addition to differences in the resource potential of particular natural environments, the 115 
governmental situation may dictate which regions will be favoured for exploration and exploitation of microbial 116 
bioactives. Compliance with the Nagoya Protocol requires the explorer to legally acquire any genetic resource, 117 
prove due diligence through traceability, risk assessment and risk mitigation procedures, and enable 118 
inspections by national authorities. Each signatory state may either determine its own access policy, or provide 119 
free access to its genetic resources and associated traditional knowledge (www.cbd.int/abs). However, 120 
concepts of biological diversity that are the foundation of the Nagoya Protocol are not directly applicable for 121 
microorganisms that do not abide the same patterns of endemism as plants and animals [37]. For example, 122 
Streptomyces carpaticus strains isolated from coastal habitats in four different continents all produced the 123 
same cytotoxic specialized metabolite (Ikarugamycin)[38]; to a large degree, ‘everything is everywhere’ 124 
where the environment selects for the same molecular functions [39]. In addition, structurally very similar 125 
polyketides have been obtained from bacterial symbionts from either insects or sponges [40]. Therefore, 126 
countries that have a more open attitude and lower administrative burden towards scientific exploration and 127 
commercial application of microbial specialized metabolites will likely be more attractive for scientists and 128 
industries. 129 

 130 
Rapid identification and prioritizing specialized metabolites 131 

In recent years, genome mining for BGCs has become a key approach for identification of new 132 
molecules and corresponding novel products. For compounds produced by PKSs and NRPSs, their biosynthetic 133 
pathways and product structures can be predicted using a range of computational tools and approaches [Table 134 
1] [41–47]. 135 

The ability to detect potentially new classes of BGCs, including those prevailing in the uncultured 136 
majority of microorganisms, is a valuable endeavour as these will most likely code for molecules with new 137 
chemical scaffolds [51,52]. Tools such as ClusterFinder [11,53] and EvoMining [48] have been developed for 138 
this purpose. The former queries genome sequences for BGC-like regions based on the presence of broad 139 



Pfam protein domains associated with enzyme families commonly recycled in diverse specialized metabolic 140 
pathways. The latter exploits the notion that enzymes involved in specialized metabolism are paralogs of 141 
primary ones, which have undergone sequence and functional divergence, and utilizes phylogenetic analyses 142 
to detect these outliers [47,54]. Recent developments in high-throughput, single cell and long-read next-143 
generation sequencing technologies are leading us to an era of fast, affordable sequencing and assembly of 144 
genomes from microbial isolates/consortia. Thus, it is becoming increasingly feasible to access culturable 145 
bacterial taxa and obtain high-quality genomes from these strains, despite the presence of repetitive genomic 146 
regions such as those including BGCs encoding NRPS and PKS enzymes [22,47,54–57]. 147 

 148 
Table 1. Tools for identification of BGCs 149 

Tool Approach Reference 
antiSMASH 

Identification or signature genomic and protein domains that are hallmarks of 
biosynthetic pathways. Usually making use of profile Hidden Markov Models (HMM), 
BLAST and both general databases like Pfam and specialized PKS/NRPS databases for 
annotation and protein identification. 

[46] 

SMURF [41] 

PRISM [43] 

NP.searcher [45] 

CLUSEAN [44] 

EvoMining 
Exploits the notion that enzymes involved in specialized metabolism are paralogs of 
primary ones, which have undergone sequence and functional divergence to acquire 
functions in specialized metabolism. Utilizes phylogenetic mining to detect these outliers. 

[48] 

ClusterFinder 
Queries genome sequences for BGC-like regions based on the presence of Pfam protein 
domain frequencies associated with enzyme families that are indicative of diverse 
specialized metabolic pathways. 

[11] 

GRAPE 
Retro-biosynthesis, i.e. computational deconstruction of PK and NRP chemical structures 
to predict their parent PKS/NRPS, producing assembly line monomers and tailoring 
enzymes. 

[49] 

Bandage 
Tool for visualizing de Bruijn assembly graphs, allows for a deeper analysis of de novo 
assemblies which is not accessible through study of individual contigs. 

[50] 

 150 
Moreover, through direct capture of environmental DNA from microbiomes of macroorganisms, 151 

metagenomics allows efficiently moving biosynthetic diversity from the environment into the drug discovery 152 
space [57]. PCR-based sequence tag approaches that screen metagenomic libraries for biosynthetic novelty 153 
are considered well established technologies [4,57,58]. However, despite being plagued by issues related to 154 
acquiring highly contiguous assemblies of BGCs, sequencing and assembly of environmental DNA by shotgun 155 
metagenomics constitutes a much more unbiased approach to profile biosynthetic diversity [22]. Whereas 156 
artificial long-read technologies offer valuable improvements in assembly quality [59–61], PK and NRP BGCs 157 
are usually still hard to assemble and often remain fragmented across multiple contigs. Nevertheless, contigs 158 
generated by De Bruijn Graph assembly algorithms are not islands on their own, but in fact are connected to 159 
other contigs in an assembly graph. Although information contained in the assembly graph is lost in the way 160 
sequence assemblies are usually studied, the assembly graph files themselves can be analyzed with 161 
visualization software tools like Bandage[50]. By performing BLAST similarity searches on such a graph, one 162 
can often derive which BGC fragments belong to the same gene cluster. Based on this, clusters can potentially 163 
be reconstructed by finding the most plausible path through the assembly graph based on homology inference 164 
(as recently done for the bananamide BGC in a fragmented draft genome of Pseudomonas fluorescens BW11P2 165 
[62] [Figure 2] [21]) or otherwise by designing primers to amplify and Sanger-sequence the gaps between 166 
the contigs. Alternatively, long read nanopore sequencing can also be used[63]. Additionally, binning 167 
metagenomes into metagenome-assembled genomes (MAGs) based on differential coverage and 168 
oligonucleotide frequencies, and subsequently re-assembling/finishing of high-quality MAGs allows increasing 169 
the contiguity of the assembly for particular organisms within a microbial community [64]. 170 

These and other computational methodologies are now making it possible to assemble many complete 171 
biosynthetic gene clusters from relatively complex metagenomes.The prediction of natural product structures 172 
from gene clusters is still challenging as deviations in gene order and enzyme modularity occur frequently 173 
[49], and predicting the regioselectivity of tailoring reactions is very complicated. Nevertheless, computational 174 
dereplication strategies based on sequence similarity [1] or retro-biosynthesis [49] make it possible to reliably 175 
identify BGCs that are likely to be involved in the production of novel chemical scaffolds. Moreover, target-176 



based genome mining based on the detection of resistance genes within BGCs [65] makes it possible to 177 
pinpoint ‘low-hanging fruits’ that are likely to be responsible for the production of molecules that bind to 178 
cellular targets of interest, as the resistance genes often constitute paralogous copies of these molecular 179 
targets that are insensitive to the product of the BGC. Based on such and other criteria, at least a sub-set of 180 
BGCs can be intelligently shortlisted for expression studies. 181 
 182 

 183 
 184 
Figure 2. Assembly graph of a fragmented draft genome of Pseudomonas fluorescens BW11P2[54], 185 
assembled by SPAdes, containing the reconstructed bananamide BGC. In the graph, the grey lines represent 186 
nodes (contigs) and black lines paths that represent possible connections between contigs. The upper left corner of 187 
the panel depicts a zoom-in visualization for the BLAST result of the genes in this BGC, blue, red and green represent 188 
the BLAST hits for gene banA, banB and banC correspondingly. Co-localization on the same node of banA and part 189 
of banB indicates proximity of these genes on the genome. 190 

 191 
Heterologous expression strategies for specialized metabolites 192 

Biodiversity profiling of different environmental niches provides an outline of the phylogenetic 193 
composition of the corresponding communities, and demonstrates that uncultured species outnumber their 194 
cultured counterparts. Therefore, the quest to functionally express BGCs is currently the most urgent issue to 195 
unlock and exploit these gene clusters. However, this is not a straightforward undertaking. Firstly, because 196 
many BGCs are found in non-model organisms, often with rather distinct codon usage to general production 197 
hosts such as E. coli. Secondly, they are often encoded by clusters that can span over 100 kb of DNA, possibly 198 
including complex regulatory mechanisms [66]. Nevertheless, several methods have been developed allowing 199 
PKS and NRPS gene clusters to be successfully cloned and expressed in bacteria and fungi [67–74]. 200 

DNA assembly methods, such as transformation-associated recombination (TAR) cloning are powerful 201 
tools for manipulating large DNA molecules. TAR makes use of homologous recombination in yeast and it has 202 
been successfully applied to clone and express the 73kb gene cluster encoding the antibiotic taromycin A, 203 
originating from a marine actinomycete [72]. Furthermore, a number of direct cloning methods allow 204 
integration of gene clusters at specific sites in the production host’s chromosome, mainly via standard 205 
recombination methods. Direct cloning via Red/ET recombineering is based on E. coli linear plus linear 206 
homologous recombination [75], and has been sucessfully used to express large biosynthetic pathways such 207 
as the NPRS clusters coding for edeine (48.3kb) and bacillomycin (37.3kb) [70].   208 



Advances in synthetic biology (including DNA construction tools, synthetic regulatory circuits and 209 
multiplexed genome engineering) enable the harnessing of metagenomic data for high-throughput molecular 210 
discovery, as well as pathway design for the production of complex chemicals [66,74,76]. In at least one 211 
instance, using a plug-and-play DNA assembly strategy to achieve full gene cluster refactoring in a single step 212 
manner has proved more effective than direct cloning and promoter insertion. This also made it possible to 213 
construct an automated platform with a high degree of flexibility for generating gene deletions or additions 214 
[77]. As a proof of principle for this approach, Luo and colleagues succeeded in expressing and characterizing 215 
a cryptic BCG encoding for the production of a polycyclic tretamate macrolactam PKS-NRPS hybrid [77]. With 216 
the continuous decrease in DNA synthesis cost, synthetic (codon-optimized) versions of many BGCs can be 217 
reconstructed in high-throughput using this technology.  218 

One key issue that is difficult to address, especially for gene clusters for which the real molecular 219 
product is unknown beforehand, is that of cross-talk between the heterologously expressed pathway and the 220 
native pathways. A recent study by Zhang et al. showed that heterologous expression of the lyngbyatoxin 221 
gene cluster in three different streptomycete hosts lead to the generation of different natural product 222 
derivatives [78]. Because small variations in chemical structure can have a major impact on biological activity, 223 
expression studies in multiple hosts (or multiple versions of the same hosts with different native BGCs knocked 224 
out using e.g. CRISPR/Cas) are required to ascertain the true product of a synthetically reconstructed BGC for 225 
which the native product is unknown. In the more distant future, it might be worth considering to design 226 
‘orthogonal’ heterologous expression strategies that isolate the heterologous pathway from native metabolism, 227 
e.g. through compartmentalization [79,80]. 228 
 229 
Outlook  230 
Microbial specialized metabolites are a vast and exceptional resource that may contribute to solving the current 231 
antibiotic resistance crisis [19,81,82]. Based on several technological advances, it is now possible to reach 232 
and sample the most difficult-to-access places on Earth. Exploration of scarcely touched environments in 233 
combination with the revolutionary developments in metagenomics and computational biology has already led 234 
to an explosion in the number of known BGC sequences. Our greatest current challenge is to systematically 235 
use these sequences for the production of specialized metabolites and the discovery of their biological 236 
functions. Nonwithstanding, we have witnessed a growing number of success cases in the past decade, 237 
including the activation or heterologous expression of cognate BGCs from non-model organisms leading to the 238 
successful production of several previously unknown secondary metabolites. Ultimately, the implementation 239 
of multi-omics approaches that combine ecological insights with state-of-the-art computational and molecular 240 
genomics developments will lead to deep understanding and more efficient exploitation of microbial specialized 241 
metabolism. 242 
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