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Breakthrough in Marine 
Invertebrate Cell Culture: Sponge 
Cells Divide Rapidly in Improved 
Nutrient Medium
Megan Conkling1,5, Kylie Hesp2,5, Stephanie Munroe1,2,5, Kenneth Sandoval1,2, 
Dirk E. Martens2,5, Detmer Sipkema3,5, Rene H. Wijffels2,4,5 & Shirley A. Pomponi   1,2,5*

Sponges (Phylum Porifera) are among the oldest Metazoa and considered critical to understanding 
animal evolution and development. They are also the most prolific source of marine-derived chemicals 
with pharmaceutical relevance. Cell lines are important tools for research in many disciplines, and 
have been established for many organisms, including freshwater and terrestrial invertebrates. Despite 
many efforts over multiple decades, there are still no cell lines for marine invertebrates. In this study, 
we report a breakthrough: we demonstrate that an amino acid-optimized nutrient medium stimulates 
rapid cell division in 9 sponge species. The fastest dividing cells doubled in less than 1 hour. Cultures 
of 3 species were subcultured from 3 to 5 times, with an average of 5.99 population doublings after 
subculturing, and a lifespan from 21 to 35 days. Our results form the basis for developing marine 
invertebrate cell models to better understand early animal evolution, determine the role of secondary 
metabolites, and predict the impact of climate change to coral reef community ecology. Furthermore, 
sponge cell lines can be used to scale-up production of sponge-derived chemicals for clinical trials and 
develop new drugs to combat cancer and other diseases.

Sponges (Phylum Porifera) are key components of many benthic marine ecosystems. There are more than 9,000 
described species that occur worldwide, from the intertidal to the deep sea1. Among the oldest metazoans, 
sponges have evolved a variety of strategies to adapt to different environments. Because they are sessile as adults, 
they have evolved sophisticated chemical systems for communication, defense from predators, antifoulants to 
prevent other organisms from growing over them, and to prevent infection from microbes filtered out of the 
water2,3. These chemicals interact with molecules that have been conserved throughout evolutionary history and 
are involved in human disease processes, for example, cell cycling4, immune and inflammatory responses5, and 
calcium and sodium regulation6,7.

Vertebrate, insect, and plant cell lines are important tools for research in many disciplines, including human 
health, evolutionary and developmental biology, agriculture, and toxicology. Although cell lines have been estab-
lished for freshwater and terrestrial invertebrates (e.g., Hydra, Caenorhabditis), and long-term (>1 month) pri-
mary cultures have been reported for cells derived from tissues of the cnidarian Anemonia viridis and the shrimp 
Penaeus8,9, attempts to establish cell lines from marine invertebrates have been unsuccessful9–11.

Marine sponges, including some of the species in this study, are the source of thousands of novel chemi-
cals with pharmaceutically relevant properties12–14. Supply of these chemicals is a bottleneck to development of 
sponge-derived drug leads: wild harvest is not ecologically sustainable, and chemical synthesis is challenging due 
to the complexity of many of the bioactive chemical compounds. In vitro production has been proposed as an 
option, but the lack of permanent sponge cell lines makes this option unfeasible.

Sponge cell lines could be used as models to understand the role of secondary metabolites in sponges, to 
use this information to develop new models for drug discovery, and to scale-up production of sponge-derived 
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bioactive compounds for novel medicines. Cell lines of common reef sponges could also be used to quantify the 
effects of climate change (ocean warming and acidification) on uptake of dissolved organic material (DOM), a 
major component of the “sponge loop hypothesis” of carbon cycling and to test the hypothesis that coral reefs 
could become sponge reefs as climate changes15.

To date, primary cultures have been established from dissociated and cryopreserved cells of several sponge 
species4,16–18; optimized nutrient media have been developed16,19–22; cell division has been stimulated with growth 
factors and mitogens23,24 (Munroe et al. in prep); transient expression of immortalizing genes has been obtained25; 
somatic cell hybridization has been demonstrated26; and methods for three-dimensional culture in hydrogels have 
been established27,28 (Munroe et al. in prep). These improvements in sponge cell culture were sporadic and incre-
mental, and resulted only in a limited number of cell divisions. In this study, we report a breakthrough in marine 
invertebrate (sponge) cell culture: using an optimized nutrient medium22, a substantial increase in both the rate 
and number of cell divisions has been accomplished for the first time.

Results
An amino acid-optimized nutrient medium stimulates rapid cell division in primary cell cultures  
of marine sponges.  We cultured cells of 12 sponge species in three different media: artificial seawater 
(ASW), Medium 199 (M199), and M1 (Fig. 1). As predicted from prior research4,16,17, the number of cells cul-
tured in ASW either remained the same or decreased, except for an unidentified species of Spongiidae (Fig. 1i). 
Although the pattern of cell number increase and decrease in ASW for Amphimedon erina parallels the pattern 
for M199 and M1 after the initial decrease in ASW (Fig. 1d), there was only a small increase in cell number in 
ASW (~25%) compared with nearly a three-fold increase in cell number in M199 and M1 after day 1. Within two 
days of incubation in M1, cell numbers increased for each of the following species: Geodia barretti, Geodia sp., G. 
neptuni, A. erina, Amphimedon compressa, Niphates erecta, Aplysina fulva, the unidentified species of Spongiidae, 
and Tedania ignis (Fig. 1a–g,i,l). Of these, G. barretti, Geodia sp., G. neptuni, A. erina, A. compressa, and A. fulva 
had the largest increase in cell number in M1, with between 1.5 and 3 population doublings (Fig. 1a–e,g). Cell 
numbers also increased in M199 for the same six species, although either lower than (G. barretti, Geodia sp., G. 
neptuni, and A. compressa) or equal to (A. erina and A. fulva) the increase in cell numbers in M1. For three species 
(D. etheria, A. corrugata, and C. varians), there was no increase in cell number in any medium (Fig. 1h,j,k). The 
medium in cultures of each individual of each species with increases in cell number changed color from pale 
orange to dark grey, and the cells appeared microscopically to have dark inclusions (unpublished data). These 
changes were observed as soon as cultures increased in cell number and became increasingly darker as the cell 
density increased. The color change is not associated with a change in pH of the culture medium (spent medium 
pH: 7.8). Research is in progress to determine the cause of the color change and to characterize the cell inclusions.

Individual (intraspecific) variation must be factored into selection of source material.  To eval-
uate individual (intraspecific) variation, we focused subsequent studies on the six species with the largest increase 
in cell density in M1: G. barretti, Geodia sp., G. neptuni, A. compressa, A. erina, and A. fulva (Fig. 1). For these 
species, cells from multiple individuals were cultivated in triplicate for 48 hours in M1 medium. There was little 
individual (intraspecific) variation in final cell density for each of the three species of Geodia cultured for 48 hours 
(Fig. 2a–c). Conversely, individuals of A. erina, A. compressa, and A. fulva had individual (intraspecific) variation 
in final cell density (Fig. 2d–f).

Marine sponge cells are capable of rapid cell division.  In this study, we selected three species of 
Geodia because there was little intraspecific variation when cultured in M1 medium. In addition, G. barretti is the 
source of compounds with anti-inflammatory activity29. Cell density of G. barretti, Geodia sp., and G. neptuni was 
measured with a finer time resolution to understand the dynamics of cell division for each species (Fig. 3) and to 
identify when the cultures were near the end of exponential growth and, therefore, ready to subculture/passage. 
Growth curves were analyzed for all three species at both 22 °C (Fig. 3a–c), the temperature at which M1 medium 
was optimized, and 4 °C (Fig. 3d–f). These temperatures were chosen because Geodia sp. occurs on shallow grass 
flats (~2 meters) and G. neptuni occurs on shallow reefs (~20 meters) off Summerland Key, FL, USA, with sea 
surface temperatures ranging from 21.5 °C to 30.5 °C, and G. barretti occurs in deeper water (~500 meters) in 
Norwegian fjords, with sea surface temperatures ranging from 5.5 °C to 15.5 °C. Rapid cell division was observed 
in all Geodia species (Fig. 3a–f), although the number of population doublings (Nd) varied between species and 
incubation temperatures (Table 1).

Geodia barretti cultures did not reach the same density as the other two species. There was little individual var-
iation in peak cell density for G. barretti when cultured at 4 °C, with an average of 8.54E + 06 cells/mL (Fig. 3a). 
When G. barretti cells were cultured at 22 °C, two individuals reached peak densities of 1.67E + 07 cells/mL and 
1.73E + 07 cells/mL (Fig. 3a). One individual at 22 °C had a lower peak density of 1.11E + 07 cells/mL (Fig. 3a).

Two individuals of Geodia sp. cultured at 22 °C reached a peak density of 6.03E + 07 cells/mL and 6.08E + 07 
cells/mL within 12 hours (Fig. 3b). The third individual cultured at 22 °C reached a significantly higher peak 
density (8.38E + 07 cells/mL) within 9 hours (Fig. 3b). Different individual responses were observed for Geodia 
sp. cells cultured at 4 °C. Two individuals cultured at 4 °C reached a peak density of 4.29E + 07 cells/mL and 
4.71e + 07 cell/mL (Fig. 3e). At 4 °C, one individual reached a higher peak density of 5.61E + 07 cells/mL within 
24 hours (Fig. 3e); this was not the same individual with the highest density at 22 °C.

Cultures of all 3 individuals of G. neptuni incubated at 22 °C reached an average peak density of 5.54E + 07 
cells/mL within 12 hours (Fig. 3c). The average peak cell density of G. neptuni cells incubated at 4 °C was lower 
(4.97E + 07 cells/mL) (Fig. 3f).
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Cultures can be subcultured and maintained for up to several weeks.  Figure 4 shows the results of 
subculture experiments for G. barretti, Geodia sp., and G. neptuni at both 22 °C and 4 °C. Passaging times and total 
number of population doublings varied among the three species. As in the growth curve experiments, G. barretti 
cells did not reach the same density as the other two species (~9.82E + 06 cells/mL at 4 °C and ~1.35E + 07 cells/
mL at 22 °C) (Fig. 4a,d), however, G. barretti cells continued to divide until the 5th passage, ultimately reaching a 
total of 6.95 population doublings at 4 °C and 5.54 population doublings at 22 °C (Nd) (Table 1). Cell cultures of 
Geodia sp. had individual variations in peak cell densities when cultured at 22 °C, from 3.45E + 07 to 5.77E + 07 
cells/mL (Fig. 4b). Similarly, the peak cell density of Geodia sp. cells cultured at 4 °C varied between individuals, 
from 3.79E + 07 to 5.13E + 07 cells/mL (Fig. 4e). Geodia sp. cells cultured at 4 °C reached a higher number of 

Figure 1.  Primary cultures of 12 sponge species in three different media: artificial seawater (ASW), Medium 
199 (M199) and M1 medium. (a) Geodia barretti, (b). Geodia sp., (c). Geodia neptuni, (d). Amphimedon erina, 
(e). Amphimedon compressa, (f). Niphates erecta, (g). Aplysina fulva, (h). Dysidea etheria, (i). Spongiidae, (j). 
Axinella corrugata, (k). Cliona varians, (l). Tedania ignis. Only 1 individual of each species was tested, however, 
the results are the average of 3 technical replicates (n = 3) ± standard deviation.
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Figure 2.  Primary cultures of six sponge species selected for further studies in M1 medium. (a) Geodia barretti 
(n = 4), (b). Geodia sp. (n = 6), (c). Geodia neptuni (n = 7), (d). Amphimedon erina (n = 9), (e). Amphimedon 
compressa (n = 4), (f). Aplysina fulva (n = 5). Each line represents an individual. Results are the average of 3 
technical replicates (n = 3) ± standard deviation.

Figure 3.  Growth curves of three species of Geodia. (a–c) 22 °C, (d–f) 4 °C. (a,d) Geodia barretti, (b,e) Geodia 
sp., (c,f) Geodia neptuni. Each line represents an individual. The results are the average of 3 technical replicates 
(n = 3) ± standard deviation.
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population doublings (Nd = 5.50) after 28 days of culture compared to cultures at 22 °C after 120 hours (Nd = 4.67) 
(Table 1). Geodia neptuni cultures reached 4.20 population doublings after 120 hours (5 days) (Table 1) but had an 
average peak cell density of 5.77E + 07 cell/mL within 12 hours (Fig. 4c). On the other hand, G. neptuni cultured 
at 4 °C had 5.53 population doublings over a course of 28 days (Table 1) and a lower average peak cell density, only 
reaching 4.38E + 07 cells/mL (Fig. 4f).

Cell identity was verified by 18S rRNA gene sequence analyses.  Cultures were routinely monitored 
microscopically, however, verification that the subcultures were the three Geodia species was confirmed by 18 S 
rRNA gene amplicon sequencing. For all samples sequenced, at least 99.96% of the reads had a 100% match with 
published sequence data for Geodia species (Table 2).

Discussion
We established finite cell lines30,31 for G. barretti, Geodia sp., and G. neptuni. The cultures were monitored micro-
scopically and were not axenic. However, sponges are holobionts with a diverse community of microbes32 that 
may be obligate symbionts: the microbiome of G. barretti is species-specific and stable33. Continued development 
of sponge cell lines, and specifically, the establishment of an axenic cell line, will provide a sponge model to test 
hypotheses related to the functional role(s) of the sponge microbiome.

As noted, the medium in cultures with dividing cells changed color, from pale orange to dark grey, and the 
sponge cells appeared microscopically to have dark inclusions (~0.5 µm). The change in medium color and 
appearance of dark inclusions were present in each individual of each species that had increases in cell number. 
These changes were observed as soon as cultures increased in cell number and became increasingly darker as 
the cell density increased. We hypothesize that the color change is associated with the production of melanin, 
a photo-protective pigment that has been reported from the ectosome of marine sponges34. Sponge-associated 

Experiment

Geodia barretti Geodia sp. Geodia neptuni

Nd σ Nd σ Nd σ

Growth curves
22 °C 2.26 ±0.33 3.67 ±0.12 3.17 ±0.05

4 °C 1.54 ±0.18 3.27 ±0.12 3.47 ±0.17

Subcultures
22 °C 5.54 ±0.17 4.67 ±0.26 4.20 ±0.08

4 °C 6.95 ±0.63 5.50 ±0.28 5.53 ±0.12

Table 1.  Population doublings (Nd) for growth curve and subculture/passaging experiments. The results are the 
average of 3 technical replicates (n = 3) ± standard deviation.

Figure 4.  Passaging of three species of Geodia in M1 medium. (a–c) 22 °C, (d–f) 4 °C. (a,d) Geodia barretti, 
(b,e). Geodia sp., (c,f) Geodia neptuni. Each line represents an individual. The results are the average of 3 
technical replicates (n = 3) ± standard deviation.
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bacteria also produce melanin, causing color changes to media35. Research is in progress in our group to deter-
mine the exact cause of the color change in the medium and to characterize the inclusions present in the cells.

Both interspecific and intraspecific (individual) variation have been observed in metabolic responses of 
sponges18,22. Over the course of this study, inter- and intra-species responses were observed for peak cell densities, 
number of population doublings, passaging times and culture lifespan. Cells remained in stationary phase for up 
to 1 week, depending on the species and the culture temperature. Our results demonstrate the necessity of testing 
multiple individuals of the target species to identify the appropriate individuals for continued development of cell 
lines. The choice of which sponge species and even which individuals to use can have a significant impact on the 
outcome of the study. Selecting the appropriate species and individual source material to establish marine sponge 
cell lines cannot be overemphasized.

The establishment of sponge cell lines requires the optimization of several variables, including nutrient media, 
incubation temperature, inoculation/seeding density, duration between passages, and the use of antibiotics, to 
name a few. Optimization of nutrient media is especially important: A genetic algorithm approach was used to 
optimize the amino acid composition of M199 to improve metabolic activity in primary sponge cell cultures. M1 
medium was optimized from M199, based on 48-hour cultures of one sponge species, D. etheria22. Even though 
M1 was developed for and stimulated metabolic activity in D. etheria, cells from this species did not divide22. 
Nevertheless, we hypothesized that the optimized medium would stimulate cell division in other sponge species, 
and our results demonstrate that M1 stimulated rapid cell division in 9 other species. M199 also stimulated cell 
division, but M1 was better for most species. Since M1 contains extra amino acids, for some sponges the amino 
acid content of M199 is suboptimal. Research is in progress to optimize other medium components (e.g., lipids, 
vitamins, trace metals, growth factors) (Munroe et al. in prep) and to develop cell lines from additional species of 
sponges. We hypothesize that, not unlike optimization of other eukaryotic cell lines, medium optimization will 
be required for each species and for the intended application of the cell line.

Conclusion
Our demonstration of exceptionally fast cell division for marine invertebrates (sponges), as well as our ability to 
subculture the cells, is a breakthrough in marine biotechnology. From this study, we conclude that optimization 
needs to be species-specific and may depend on the intended use of the cell lines. Our results form the basis for 
developing marine invertebrate (sponge) cell models to better understand early animal evolution and to test 
hypotheses related to the effects of higher temperature and lower pH on sponges. Furthermore, sponge cell lines 
may be used to scale-up production of sponge-derived chemicals with pharmaceutical relevance, and to gain 
more insight into the role of secondary metabolites in sponges to develop new models for marine natural prod-
ucts drug discovery.

Methods
Sample collection.  Individuals of twelve sponge species (Class Demospongiae) from seven orders and eight 
families were collected for this study. Amphimedon erina (Order Haplosclerida, Family Niphatidae), Cliona var-
ians (Order Clionaida, Family Clionaidae), Dysidea etheria (Order Dictyoceratida, Family Dysideidae), Geodia 
sp. (Order Tetractinellida, Family Geodiidae), an unidentified species of Spongiidae (Order Dictyoceratida), 
and Tedania ignis (Order Poecilosclerida, Family Tedaniidae) were collected from Atlantic coastal waters off 
Summerland Key, Florida (24°39′36.9″N 81°27′18.0″W) at a depth of approximately one to two meters, from 
sandy bottom grass flats and mangrove roots. Amphimedon compressa (Order Haplosclerida, Family Niphatidae), 
Aplysina fulva (Order Verongiida, Family Aplysinidae), Axinella corrugata (Order Axinellida, Family 
Axinellidae), Geodia neptuni (Order Tetractinellida, Family Geodiidae) and Niphates erecta (Order Haplosclerida, 
Family Niphatidae) were collected from a deeper (~20 meters) reef site off Looe Key, Florida (24°32′44.6″N 
81°24′21.4″W), characterized by hard bottom with dense sponge, coral and algae cover. Geodia barretti (Order 
Tetractinellida, Family Geodiidae) individuals were collected in a single trawl at a depth of ~500 meters in a fjord 
(59°58.8″N 5°22.4″E) close to Bergen, Norway. Collections from Florida were authorized under permit #FKNMS-
2014-070 from the National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, 
and Special Activity License SAL-14-1588-SR from the Florida Fish and Wildlife Conservation Commission.

Sample identification.  Taxonomic identification of the sponges was confirmed by evaluation of mor-
phological characters: morphology, color, surface texture, and microscopic analysis of the skeleton. Geodia sp. 

Geodia barretti Geodia sp. Geodia neptuni

T0 P4 T0 P4 T0 P4

Animalia, Porifera, Demospongiae, Tetractinellida, Geodiidae, Geodia 99.80% 99.84% 99.99% 99.96% 99.98% 99.94%

Animalia, Porifera, Demospongiae, Polymastiida, Polymastiidae 0.20% 0.16% 0.00% 0.00% 0.00% 0.01%

Animalia, Porifera, Demospongiae, Haplosclerida, Niphatidae 0.00% 0.00% 0.01% 0.04% 0.00% 0.00%

Animalia, Porifera, Demospongiae, Dictyoceratida, Dysideidae 0.00% 0.00% 0.00% 0.00% 0.01% 0.01%

Animalia, Cnidaria, Hydrozoa, Anthoathecata, Hydractiniidae, Clavactinia 0.00% 0.00% 0.00% 0.00% 0.01% 0.04%

Table 2.  18S rRNA gene sequence match data for each species at time point zero (T0) and after four passages 
(P4) for G. barretti or one passage (P1) for G. neptuni and Geodia sp. The results are for analysis of one 
individual for each species.

https://doi.org/10.1038/s41598-019-53643-y
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(reported as Geodia vosmaeri36) is in the process of being re-described (Cardenas, personal communication), but 
it is an easily recognized species in shallow water grass flats off the coast of south Florida.

Dissociation and cryopreservation.  Cells from all studied species were dissociated and cryopreserved 
immediately after sampling using previously established methods18,24,37. Sponges were cleaned of debris and 
rinsed in seawater filtered through a sterile 0.22 µm filter (FSW). Cells were dissociated by squeezing fragments of 
sponge through sterile gauze (grade 16 mesh size for G. barretti [B. Braun Medical] and grade 10 mesh size for all 
other species [Fisherbrand]) and filtering the cell suspension through a cell strainer (40 μm [Greiner Bio-One] for 
G. barretti and 70 μm [Fisherbrand]) for all other species) to eliminate debris, cell aggregates and spicules. Cells 
were washed twice by centrifugation at 300 × g for 5 minutes and resuspended in FSW. Cell concentrations of G. 
barretti were microscopically counted using disposable hemocytometers (C-chip™, Neubauer improved); cells 
from all other species were automatically counted using the Countess II FL Automated Cell Counter (Thermo 
Fisher). Dissociated cells from all species were cryopreserved at a cell concentration of approximately 1.00E + 08 
cells/mL in a cryoprotectant solution (10% dimethyl sulfoxide (DMSO) and 10% fetal bovine serum (FBS) in 
FSW)18,24,38. Cells were pipetted (1 mL) into cryogenic vials (Fisherbrand), the vials were placed in Nalgene® Mr. 
Frosty freezing containers and cooled to −80 °C at a steady rate of 1 °C per minute.

Media preparation.  Artificial seawater (ASW), modified from Zhang et al. (2004), was prepared by dis-
solving salts into filter sterilized distilled water (DIW) and then autoclaving at 121 °C for 25 min18,22. Medium 
199 (Sigma Aldrich, M3769) was prepared according to the manufacturer’s protocol. M1 medium was prepared 
by dissolving Medium 199 powder (Sigma Aldrich, M3769) in distilled water (DIW). Salts were added in con-
centrations to approximate the pH (medium: 7.9; ocean: 8.1) and salinity (medium: 33.5 ppt; ocean: 35 ppt) of 
seawater (Table 3). Next, amino acids were added in the concentrations that were optimized for in vitro culture of 
the sponge D. etheria22 (Table 3). Both M1 and M199 were supplemented with rifampicin (Sigma Aldrich, R3501) 
and amphotericin B (Sigma Aldrich, A2411) to control bacterial and fungal contamination, respectively.

Establishment of primary cultures.  For the first set of experiments, primary cultures of twelve species (one 
individual of each species) were evaluated to determine which species would proliferate in three different media 
(Table 3): artificial seawater (ASW), Medium 199 (M199)24 and M1 medium22. Cryopreserved cells were thawed rap-
idly in a 50 °C water bath to minimize ice crystal damage to the cells24,37. The cell suspension was rinsed twice by cen-
trifugation at 4000 × rpm for 5 minutes and resuspended in ASW. Cell number was measured automatically using the 
Countess II FL Automated Cell Counter (Thermo Fisher) for all time points for all species except G. barretti, for which 
cell concentrations were counted microscopically using a disposable hemocytometer (C-chip, Neubauer improved). 
Prior to counting the cells, the cell suspension was gently pipetted to disperse aggregates. Cell aggregation was gen-
erally not an issue, however, if aggregation prevented accurate cell counts, the cells were resuspended in calcium- and 
magnesium-free artificial seawater (CMF)4 prior to counting. Cell concentrations at time point zero were calculated by 
counting the cell suspension and then resuspending in either ASW, M199, or M1 to the desired concentration. Samples 
were cultured in 24-well plates (Falcon): for the first two experiments (to determine if cells were dividing and to further 
evaluate cell proliferation in the 6 selected species), cells were incubated for four to six days at ~22 °C for all species 
except G. barretti, which was incubated at 4 °C. These temperatures are within the range of ambient seawater tempera-
tures for the Florida and Norway sites, respectively. To further characterize cell division and to determine the number 
of times the cells could be subcultured, the three Geodia species were incubated at both ~22 °C and 4 °C.

Growth characterization.  Growth curves in M1 were determined for G. barretti, Geodia sp., and G. nep-
tuni (n = 3 specimens for each species). Specimens (=individuals) were prepared in triplicate, in 96-well plates 
(Falcon), for each individual and time point. All samples were incubated at ~22 °C and at 4 °C. Cell number 
was measured hourly for 12 hours, every 12 hours for 48 hours and every 24 hours for 120 hours (5 days) for all 
cultures at 22 °C, as well as G. barretti cultures at 4 °C. Cultures of Geodia sp. and G. neptuni at 4 °C were meas-
ured hourly for 24 hours and every 24 hours for 120 hours. Three seeding densities (5.00E + 05, 1.00E + 06, and 
5.00E + 06 cells/mL) were evaluated to determine the effect of inoculation density on final cell densities (unpub-
lished data). The optimal seeding density (i.e., the inoculation density that resulted in the greatest increase in cell 
number) was 3.00E + 06 cells/mL for G. barretti and 5.00E + 06 cells/mL for Geodia sp. and G. neptuni. Cells were 
automatically counted using the Countess II FL Automated Cell Counter (Thermo Fisher) for Geodia sp. and G. 
neptuni, and manually counted for G. barretti using disposable hemocytometers (C-chip, Neubauer improved) 
for all time points except for G. barretti at time point zero, which was calculated by counting the cell suspension, 
and then resuspending in M1 at the desired concentration.

Passaging cells.  Cultures were passaged in M1 using three individuals per species, in triplicate, in 24-well plates 
(Falcon). All three species were cultured at both ~22 °C and 4 °C. The seeding density was 3.00E + 06 cells/mL for G. 
barretti, and 5.00E + 06 cells/mL for Geodia sp. and G. neptuni. Passaging was performed by resuspending the cells by 
pipetting, determining the cell concentration and subsequently diluting the cells, by either splitting the culture (e.g., 
1:2 ratio) or diluting back to the seeding density. Cultures were passaged until the cells stopped dividing in order to 
determine the lifespan of the cell lines for each species. Cell number was measured automatically using the Countess II 
FL Automated Cell Counter (Thermo Fisher) for Geodia sp. and G. neptuni. Geodia barretti cells were counted micro-
scopically using disposable hemocytometers (C-chip, Neubauer improved) for all time points except for time point 
zero which was calculated by counting the cell suspension and then diluting to the desired concentration. Cultures of 
all three species were monitored microscopically (EVOS FL Auto imaging system, Invitrogen).

Sponge cell verification.  To confirm that the cells in culture were from the three species of Geodia, 
18 S rRNA gene amplicon sequencing and eukaryotic community profiling was performed on cultures of all 
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three species, both before (time point zero for all three species) and after passaging (one passage, time point 
48 hours, T = 22 °C for G. neptuni and Geodia sp.; four passages, time point 28 days, T = 4 °C for G. barretti). 
Cell pellets (approximately 1.00E + 08 cell/mL) of each species were stored at −20 °C. Genomic DNA extrac-
tion, 18 S rRNA gene amplification through polymerase chain reaction (PCR) and Illumina MiSeq sequenc-
ing and sequence analysis were performed by RTL Genomics (Lubbock, Texas, USA). A High Pure PCR 
Template Preparation Kit (Roche Life Science, Basel, Switzerland) was used to extract genomic DNA follow-
ing the manufacturer’s protocol, with one exception: after addition of binding buffer and proteinase K, the 
samples were incubated at 70 °C for a prolonged period (35 minutes) to increase DNA yield. Fungal primers 
that were previously used for eukaryotic community analysis of a sponge holobiont39 were used to amplify an 
approximately 350 base pair long region of the eukaryotic small-subunit rRNA gene, including the V7 and 
V8 hypervariable regions in a two-step process. The forward primer was constructed with (5′-3′) Illumina 
i5 sequencing primer (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) and the FF390 primer 
(CGATAACGAACGAGACCT)40. The reverse primer was constructed with (5′-3′) Illumina i7 sequencing primer 
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) and the FR1 primer (ANCCATTCAATCGGTANT)40. 
Amplifications were performed in 25 µL reactions with Qiagen HotStarTaq master mix (Qiagen Inc., Valencia, 
California), 1 µL of each 5 µM primer, and 1 µL of template. Reactions were performed on ABI Veriti thermocy-
clers (Applied Biosystems, Carlsbad, California) under the following thermal profile: 95 °C for 5 minutes, then 30 
cycles of 95 °C for 30 seconds, 50 °C for 45 seconds, and 72 °C for 1 minute, followed by a final extension of 72 °C 
for 10 minutes, and a 4 °C hold. Products from the first stage amplification were added to a second PCR based 
on qualitatively determined concentrations. Primers for the second PCR were designed based on the Illumina 
Nextera PCR primers:

Forward-AATGATACGGCGACCACCGAGATCTACAC[i5index]TCGTCGGCAGCGTC and 
Reverse-CAAGCAGAAGACGGCATACGAGAT[i7index]GTCTCGTGGGCTCGG. The second stage 

Component

ASW Medium 199 M1

g/L

Salts

NaCl 23.300 6.800 15.420

Trizma HCL 4.020 — 3.769

Trizma Base 2.970 — 2.784

MgCl2 10.200 — 10.040

Na2SO4 1.000 — 0.814

CaCl2 1.000 0.200 0.400

KCl 1.000 0.400 0.302

Amino Acids

L-Alanine — 0.025 0.053

L-Arginine · HCL — 0.070 0.095

L-Aspartic Acid — 0.030 0.077

L-Asparagine — — 0.103

L-Cystine · 2HCl — 0.000 0.000

L-Cystine · HCl 
· H2O

— 0.026 0.067

L-Glutamic Acid — 0.067 0.114

L-Glutamine — 0.100 0.163

Glycine — 0.050 0.053

Hydroxy-L-Proline — 0.010 0.010

L-Histidine · HCl 
· H2O

— 0.022 0.131

L-Isoleucine — 0.020 0.070

L-Leucine — 0.060 0.113

L-Lysine · HCl — 0.070 0.089

L-Methionine — 0.015 0.081

L-Phenylalanine — 0.025 0.963

L-Proline — 0.040 0.118

L-Serine — 0.025 0.869

L-Threonine — 0.030 0.055

L-Tryptophan — 0.010 0.729

L-Tryosine · 2Na · 
2 H2O

— 0.058 0.105

L-Valine — 0.025 0.128

*
Rifampicin — 0.030 0.030

Amphotericin B — 0.003 0.003

Table 3.  Composition of the three media used in this study. *Added antibiotics and antimycotics.
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amplification was run with the following thermal profile: 95 °C for 5 minutes, then 10 cycles of 94 °C for 30 sec-
onds, 54 °C for 40 seconds, and 72 °C for 1 minute, followed by a final extension of 72 °C for 10 minutes and a 4 °C 
hold. Sequence data were analyzed using the in-house data analysis pipeline of RTL Genomics (version 2.3.1).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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