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ABSTRACT
Fungi and other eukaryotes represent one of the last frontiers of microbial diversity
in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal
RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the
fungal diversity of seven sponge species from the North Sea and the Mediterranean
Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75%
of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units)
were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-
two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales),
representing 84% of the fungal reads. Several OTUs were related to fungal sequences
previously retrieved from other sponges, but all OTUs were also related to fungi from
other biological sources, such as seawater, sediments, lakes and anaerobic digesters.
Therefore our data, supported by currently available data, point in the direction of
mostly accidental presence of fungi in sponges and do not support the existence of a
sponge-specific fungal community.

Subjects Marine Biology, Microbiology, Mycology
Keywords Marine sponge, Fungi, Yeast,Malasseziales, Symbiosis

INTRODUCTION
Fungi constitute a large proportion of microbial diversity on Earth (Hawksworth, 2001;
Mueller & Schmit, 2007) and are considered key players in terrestrial environments for
decomposition of organicmatter, nutrient recycling or as symbionts of plants or other fungi
by improving host fitness (Rodriguez, Redman & Henson, 2004). Global fungal richness has
been estimated between 1.5 and 1.6 million species (Hawksworth, 1991; Hawksworth,
2001), but despite extensive attempts to study and characterize fungi, their diversity
remains underexplored. Most of our knowledge about evolution and ecology of fungi has
been derived from cultured representatives of fungi from the terrestrial environment. In
comparison, much less is known about marine fungal diversity and ecology.

Marine fungi belong to a wide variety of families, but appear to be present only in low
numbers (compared to bacteria) in seawater and have been estimated to contribute up
to only 0.6% of the global fungal richness (Richards et al., 2012; Richards et al., 2015). The
generally accepted definition of a marine fungus is broad and is based on the habitat as
described by Kohlmeyer & Volkmann-Kohlmeyer (1990): ‘‘obligate marine fungi are those
that grow and sporulate exclusively in a marine or estuarine habitat; facultative marine
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fungi are those from freshwater and terrestrial milieus able to grow and possibly also
sporulate in the marine environment’’. Fungi are considered to play a role in marine
ecosystems as saprotrophs, parasites, or symbionts (Hyde et al., 1998). Different habitats
of marine fungi have been studied including deep-sea sediments (Singh et al., 2010),
hydrothermal vents (Le Calvez et al., 2009), seawater (Kis-Papo et al., 2003) and anoxic
regions in the deeper parts of the oceans (Bass et al., 2007). Marine fungi have also been
described to be associated to marine animals, such as sea fans (Toledo-Hernández et al.,
2008), corals (Amend, Barshis & Oliver, 2012; Bentis, Kaufman & Golubic, 2000) and algae
(Loque et al., 2009).

Marine sponges provide yet another habitat for fungi, but whereas bacterial and archaeal
diversity in sponges has been thoroughly characterized (Simister et al., 2012; Taylor et al.,
2007), knowledge of sponge-associated fungal diversity remains scarce (Webster & Taylor,
2012). Indirect evidence of interactions between marine sponges and fungi was provided
by the detection of fungal introns in the genomes of some marine sponge species that
were most probably acquired by horizontal gene transfer (Rot et al., 2006). Fungi have
been repeatedly isolated from many sponge species (Baker et al., 2009; Höller et al., 2000;
Liu et al., 2010; Passarini et al., 2013; Paz et al., 2010; Pivkin et al., 2006; Wang, Li & Zhu,
2007; Wiese et al., 2011). Despite a gap of knowledge about the fungal life cycle in sponges
and other environmental fungi (Richards et al., 2012), it is enticing to speculate about the
role of sponge-associated fungi. Many sponge-derived fungi have been found to produce
molecules with antimicrobial activity and may be involved in chemical protection of their
hosts (Indraningrat, Smidt & Sipkema, 2016). In addition, they are potentially parasites or
pathogens to sponges themselves or sponges may solely serve as a reservoir for (pathogenic)
marine fungi once they (or their spores) are trapped by the sponge through its efficient
water filtration system. For instance,Metchniskowia spp., which were found in H. simulans
and Antarctic sponges (Baker et al., 2009;Vaca et al., 2013), are known to be responsible for
the infection andmortality of prawns (Chen et al., 2007) andAspergillus sydowii, a pathogen
of sea fans was also isolated from the marine sponge Spongia obscura (Ein-Gil et al., 2009).
However, the true diversity of sponge-associated fungi has until recently been difficult
to establish (Schippers et al., 2012). The reason is that designing specific PCR primers for
universal fungal phylogenetic marker genes remains challenging since sponges and fungi
are closely related from an evolutionary perspective (Borchiellini et al., 1998). This was
demonstrated in a Hawaiian sponge study where many sponge-derived sequences were
found in clone libraries generated from PCR amplicons using ‘fungi-specific’ 18S rRNA
gene and ITS primers (Gao et al., 2008; Jin et al., 2014). With the use of next-generation
sequencing, it is nowpossible to overcome such interference of the sponge host phylogenetic
marker genes by the sheer number of reads that is generated as shown in a number of recent
studies (He et al., 2014; Passarini et al., 2015; Rodríguez-Marconi et al., 2015; Wang et al.,
2014).

The aim of this study was to assess the diversity and specificity of sponge-associated
fungi. Seven shallow water sponge species from two different regions, the North Sea and
the Mediterranean Sea, were sampled to identify host specificity of the associated fungal
communities and the impact of geography on community structuring.
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MATERIALS AND METHODS
Sample collection and processing
The North Sea sponges Halichondria panicea (P1–P3), Haliclona xena (X1–X3), and
Suberites massa (M1–M3) were collected on December 3rd, 2008, from the Oosterschelde
estuary, at the dive site Lokkersnol (N 51◦38′58.07′′, E 3◦53′5.11′′) by SCUBA diving at a
depth of approximately 14 m. Sponge collection of the North Sea sponges was approved
by the Provincie Zeeland (document number 0501560). The Mediterranean sponges
Aplysina aerophoba (A1–A3), Petrosia ficiformis (F1–F3), Axinella damicornis (D1–D3) and
Axinella verrucosa (V1–V3) were collected by SCUBA diving offshore L’Escala, Spain (N
42◦06′52.20′′, E 03◦10′06.52′′) at a depth of approximately 15 m on January 15th, 2012.
The collection of Mediterranean sponge samples was conducted in strict accordance with
Spanish and European regulations within the rules of the Spanish National Research
Council with the approval of the Directorate of Research of the Spanish Government.
Initial identification of sponges based on their morphology was done by Prof. Rene Wijfels
and Dr. Klaske Schippers for the North Sea sponges and by Dr. Detmer Sipkema and
Prof. MJ Uriz for the Mediterranean sponges. All sponge specimens from the North Sea
and the Mediterranean Sea were collected in triplicate. Specimens were brought to the
surface in ziplock plastic bags and were immediately transported to the laboratory in excess
of seawater and processed. Each sponge specimen was separately submerged and cut into
pieces of approximately 0.5 ml that contained both pinacoderm and choanoderm and
was rinsed three times in a large volume of autoclaved artificial seawater (26.52 g NaCl,
2.45 g MgCl2, 0.73 g KCl, 1.14 g CaCl2 and 3.31 g MgSO4/l) and kept at −80 ◦C until
further processing. Furthermore, between 5 and 10 l of seawater from both locations was
collected and filtered immediately upon collection onto a 0.2 µm polycarbonate filter with
a diameter of 47 mm (GE Osmonics, Minnetonka, MN, USA). Each filter was then stored
in a sterile 15 ml Falcon tube and kept at −80 ◦C until further processing.

DNA extraction and PCR amplification
Total DNA was extracted from North Sea sponges using the DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany) according to the tissue extraction protocol. For Mediterranean
sponges total DNA was extracted using the FastDNA SPIN kit for soil (MP Biomedicals,
Solon, OH, USA) with the aid of a PreCellys R© homogenizer (Bertin Technologies, France)
following the manufacturers’ protocol. For seawater samples, filters were cut in two pieces,
and DNA was extracted from half of the filter with the FastDNA SPIN kit for soil following
the same protocol that was used for the Mediterranean sponges.

Amplification of partial 18S rRNA genes was performed using the GoTaq R© Hot Start
Polymerase kit (Promega GmbH, Mannheim, Germany) with the universal fungal primers
FF390 (CGATAACGAACGAGACCT) and FR1 (ANCCATTCAATCGGTANT) (Vainio &
Hantula, 2000), which amplify a region of approximately 350 base pairs that includes the V7
and V8 hypervariable regions of the eukaryotic small-subunit rRNA gene. Sample-specific
barcodes and adapter sequences were added to the forward primer as described previously
(Hamady et al., 2008) (Table S1). The PCR conditions were: initial denaturation (2 min
at 95 ◦C) followed by 30 cycles of denaturation (30 s at 95 ◦C), primer annealing (45 s at
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50 ◦C), primer extension (60 s at 72 ◦C), and a final extension (10 min at 72 ◦C). The final
PCR mixture (50 µl) contained 1 × GoTaq R© Green Flexi buffer, 1.5 mMMgCl2, 0.2 mM
of each dNTP, 0.2 µM of each primer, 1.25 U GoTaq R© Hot Start Polymerase and 10 ng
template DNA. PCR reactions were carried out in triplicate, pooled and cleaned using the
High Pure PCR Cleanup Micro Kit (Roche Diagnostics GmbH, Mannheim, Germany).
Purified DNA concentrations were measured with a Qubit R© 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). An equimolar mixture with a final concentration of 1 µg/ml PCR
product was prepared, electrophoresed on 1.25% (w/v) agarose gel and subsequently
purified using the Milipore DNA Gel Extraction Kit (Milipore, Billerica, MA, USA). The
pooled purified DNA was pyrosequenced on a 454 Roche platform at GATC Biotech,
Konstanz, Germany. Pyrosequencing data was deposited at the European Bioinformatics
Institute with accession numbers ERS225550–ERS225575.

Sequence analysis
Pyrosequencing data was analysed using the QIIME pipeline v1.5.0 (Caporaso et al., 2010b).
Low quality sequences were removed using default parameters, including: (i) reads with
fewer than 200 or more than 1,000 nucleotides; (ii) reads with more than six ambiguous
nucleotides, (iii) homopolymer runs exceeding six nucleotides, (iv) reads with missing
quality scores and reads with a mean quality score lower than 25, and (v) reads with
mismatches in the primer sequence. Operational taxonomic units (OTUs) were identified
at the 97% identity level using UCLUST v1.2.22 embedded in QIIME (Edgar, 2010).
Representative sequences from the OTUs were aligned using PyNAST (Caporaso et al.,
2010a) against the aligned SILVA 104 core set. Taxonomic assignment of all OTUs was
performed using the BLAST algorithm against the QIIME-compatible version of the
SILVA 104 release (Pruesse et al., 2007) as reference database. Possible chimeric OTUs were
identified using QIIME’s ChimeraSlayer and removed from the initially generated OTU
list, producing a final set of 585 non-chimeric OTUs.

Since the majority of reads and OTUs were not of fungal origin, these were removed
from the dataset prior to further analysis. The fungal OTU matrix from sponge and
seawater samples was used to calculate species richness estimates using the ‘Species
Frequency/Abundance Data’ option with default settings with the SPADE program (Chao
& Shen, 2013). Fungal community coverage was estimated using Good’s coverage in which
Coverage = 1–(number of singleton OTUs/number of reads). In addition, the fungal
OTU matrix was used for betadiversity analysis and samples that had <10 fungal reads
were excluded from this analysis. Bray Curtis dissimilarity was calculated based on square
root transformed relative abundance data and on presence-absence. Principal coordinates
analysis (PCoA) was performed to represent the samples in a low dimensional space.
All statistical analyses were performed using the multivariate statistical software package
Primer V7 (Primer-E Ltd., Plymouth, UK).

Phylogenetic analysis of sponge-associated fungi
For a more detailed phylogenetic analysis of the fungal OTUs from sponges we selected all
fungal OTUs that were found in sponge samples excluding only singletons. Representative
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reads for these OTUs were deposited at NCBI genbank with accession numbersMF094397–
MF094440 (also available in Table S4). These representative sequences were aligned
using the SILVA online SINA alignment service (Pruesse et al., 2007). Each OTU was
complemented with the two most closely related 18S rRNA gene sequences as determined
by a BLAST search against the NCBI nucleotide database. Nearest neighbour sequences and
published 18S rRNA sponge-derived fungal sequences longer than 700 nucleotides (Baker
et al., 2009; Simister et al., 2012) were downloaded from the SILVA database (release 108)
and together with aligned OTUs from our own dataset imported into the ARB software
package (Ludwig et al., 2004). Nearest neighbour sequences and published sponge-derived
fungal 18S rRNA sequences were first used to construct a Bayesian phylogenetic tree.
Ambiguous regions of the alignment were systematically removed using the program
Gblocks v.0.91b (Castresana, 2000). The default program parameters were used, except
allowing a minimum block length of three and gaps in 50% of positions. Phylogenetic trees
were created by Bayesian analysis, using MrBayes v3.2 (Ronquist et al., 2012) at the freely
available Bioportal server (http://www.bioportal.uio.no). All parameters were treated as
unknown variables with uniform prior-probability densities at the beginning of each run,
and their values were estimated from the data during the analysis. All Bayesian analyses
were initiated with random starting trees and were run for 107 generations. The number
of chains was set to four and Markov chains were sampled every 1,000 iterations. Points
prior to convergence were determined graphically and discarded. Calculated trees were
imported into ARB and short sequences obtained in this study were subsequently added
by use of the ARB parsimony method without changing the tree topology.

Molecular identification of sponge samples
To verify the identity of the sponge species, the six OTUs that represented the highest
number of reads per sponge species (i.e., OTU65: S. massa, OTU190: H. xena, OTU319:
A. aerophoba, OTU320: P. ficiformis, OTU333: Axinella damicornis and Axinella verrucosa
and OTU495: H. panicea) were compared with the non-redundant nucleotide database
using the Blastn query (Table S2). Sanger reads larger than 900 nucleotides of the 18S
rRNA gene amplicons of H. panicea (P1–P3) and H. xena (X1–X3) were published in
another study (Naim et al., 2014) with accession numbers KC899022–KC899040. The 18S
rRNA gene regions of the amplicons generated here do not overlap with the sequences
KC899022–KC899040.

RESULTS
After DNA sequence quality filtering, a total of 350,341 partial 18S rRNA non-chimeric
reads were retained. Thirty five reads could not be classified at the domain level and were
removed from the dataset prior to further analysis. The remaining reads clustered into
585 OTUs. In total, 330,884 sequences (107 OTUs), contributing to 94.4% of all reads,
were derived from the phylum Porifera (sponges). When only the sponge samples (and not
seawater) were included, the percentage of sequences identified as Porifera increased to
96.8%. P. ficiformis was an outlier compared to the other sponge species as more than half
of the reads obtained was classified as ‘‘non-sponge’’ (Fig. 1). Fungi represented 13.3% of
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Figure 1 Relative abundance of sponge, fungal and ‘‘other eukaryotic’’ 18S rRNA gene sequences for
sample types from the North Sea (A–D) andMediterranean Sea (E–I). The triplicate samples per sponge
species are pooled and the numbers within the pie diagrams represent the number of sequences obtained
for the sample type. The numbers in parentheses indicate the number of fungal reads obtained for each
sample type. WNS, North Sea water; WMS, Mediterranean seawater.

the reads (1,967 fungal reads) in P. ficiformis, and other eukaryotes (defined as eukaryotes
that are not sponge and not fungi) comprised 37.8% of the 18S rRNA gene reads. A.
aerophoba also contained a substantial fraction of non-sponge reads (7.8%), but fungi
represented only 0.17% (60 reads) of the 18S rRNA gene reads in this sponge species. In
the North Sea sponge H. panicea fungi represented 1.5% (408 reads) of the 18S rRNA gene
reads, while nearly no ‘‘other eukaryotic’’ sequences were found. For the other sponge
species studied here the large majority of sequences obtained were classified as ‘‘sponge’’,
and lower numbers of fungal reads were obtained: 63 for S. massa, 51 for H. xena, 1 for A.
verrucosa and no fungal reads were found in A. damicornis. Generally, the three replicates
per species yielded similar numbers of fungal reads (Table 1).

After removal of the 107 Porifera OTUs and 369 OTUs that were classified as ‘‘other
eukaryotes’’ from the dataset, the remaining 109 fungal OTUs were used for diversity
analyses. Highest fungal richness (Chao1) among the sponge samples was predicted for
P. ficiformis and H. panicea, and richness estimates were generally positively correlated
with the number of fungal reads obtained for the sponge samples (Table 1). Although
some stratification of the fungal communities can be observed by sponge host species, no
obvious discrimination based on geographical regions can be made (Fig. S1). The fungal
OTUs detected in sponges belonged to the phyla Ascomycota and Basidiomycota, and four
fungal-like OTUs were categorized in the environmental clade LKM11 (Figs. 2 and 3).
OTUs belonging to the phylum Chytridiomycota were only found in seawater.

For a deeper phylogenetic analysis, OTUs obtained as singletons and those that were
only found in the seawater samples were disregarded, leaving a final set of 44 fungal OTUs
detected in sponges. Twenty-eight of theseOTUswere also retrieved from seawater samples.
Half of the 44 retained OTUs was identified as yeast (Fig. 4), representing 84% of the fungal
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Table 1 Number of reads, number of fungal reads, observed fungal OTUs, expected fungal OTUs (Chao1) and Coverage (Good’s coverage) in
seawater and sponge samples at a 97% sequence similarity threshold.

Sample
name

Abbrev. Sponge taxonomic
order

Total no. of
filtered reads

No. of
fungal reads

Fungal reads

Observed OTUs Expected OTUs Coverage

North Sea water WNS 6,613 1,050 69 94± 13 0.97
H. panicea 1 P1 Halichondrida 12,418 3 3 6± 4 0
H. panicea 2 P2 Halichondrida 8,389 149 15 29± 13 0.95
H. panicea 3 P3 Halichondrida 7,214 256 16 18± 3 0.98
H. xena 1 X1 Haplosclerida 3,728 22 5 6± 2 0.91
H. xena 2 X2 Haplosclerida 4,155 14 5 7± 3 0.79
H. xena 3 X3 Haplosclerida 5,381 15 5 5± 1 0.87
S. massa 1 M1 Hadromerida 14,265 25 8 18± 10 0.8
S. massa 2 M2 Hadromerida 19,955 27 9 17± 8 0.78
S. massa 3 M3 Hadromerida 10,961 11 9 16± 7 0.36
Med. Sea water WMS 2,023 617 17 17± 1 1.00
P. ficiformis 1 F1 Haplosclerida 5,704 1,200 23 29± 7 1.00
P. ficiformis 2 F2 Haplosclerida 4,623 486 17 17± 0 1.00
P. ficiformis 3 F3 Haplosclerida 4,462 281 16 16± 0 1.00
A. aerophoba 1 A1 Verongida 14,900 7 4 5± 1 0.71
A. aerophob a 2 A2 Verongida 15,285 32 13 15± 2 0.84
A. aerophoba 3 A3 Verongida 17,472 21 21 11± 4 0.81
A. damicornis 1 D1 Halichondrida 14,900 0 0 – –
A. damicornis 2 D2 Halichondrida 15,572 0 0 – –
A. damicornis 3 D3 Halichondrida 17,472 0 0 – –
A. verrucosa 1 V1 Halichondrida 13,583 0 0 – –
A. verrucosa 2 V2 Halichondrida 13,701 0 0 – –
A. verrucosa 3 V3 Halichondrida 130,365 1 1 1± 0 0

Figure 2 Relative abundance of fungal phyla found in the cumulative sponge and seawater samples.
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Figure 3 Heatmap of fungal OTUs in North Sea sponges andMediterranean Sea sponges.OTUs that
were only found in seawater and singletons are not shown. Taxonomic affiliation is shown at phylum level
and order level whenever possible. Some OTUs (in red) were re-classified based on Bayesian phylogenetic
analysis (see also Fig. 4). WNS, North Sea water; P, Halichondria panicea; X, Haliclona xena; M, Suberites
massa; WMS, Mediterranean seawater; F, Petrosia ficiformis; A, Aplysina aerophoba. Numbers 1, 2 and 3
refer to different individuals of the sponge species.

reads found in sponges. The large majority (79% of the reads classified as yeasts) of these
yeasts was classified to the order Malasseziales. OTU514 was the most dominant fungal
OTU detected and belonged to this order. It was detected in all sponge species for which
fungal reads were obtained (Fig. 3). Other yeasts encountered in sponges belonged to the
orders Saccharomycetales, Leucosporidiales, Tremellales, Cystofilobasidiales, Sporidiobolales,
Ustilaginales, Microstromatales and Sporidiales (in order of decreasing relative abundance)
(Figs. 3 and 4).

The other 22 fungal OTUs were taxonomically identified as non-yeast fungi and
belonged to the orders Eurotiales,Dothidiomycetes,Hypocreales,Chaetothriales,Capnodiales,
Heliotales, Polyporales, Ophiostomales, Telochistales, Agaricales, fungal clade LKM11, and
a number of OTUs belonging to Ascomycota and Basidiomycota could not be reliably
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0.10

Phakellia fusca (sponge) isolate PF08, FJ941870
beetle gut isolate, JQ008831

Mycale armata (sponge) isolate MAC19, DQ875022
beetle gut isolate, AY518524

360 WNS(1) P(0/10/7) X(1/0/0) M(1/1/0) WMS(48) F(115/26/11) A(0/0/1), MF094416
392 F(11/0/2) A(0/2/0), MF094417

Barnettozyma populi, JQ698877
soil isolate, FN555430

263 WMS(1) F2(0/7/2), MF094418
545 X(3/0/0) WMS(5) F(0/5/0), MF094419

Pichia occidentalis, AB053240
170 F(1/0/0) A(1/0/0), MF094420

Cordyceps cylindrica, AB099942
Phakellia fusca (sponge) isolate PF06, FJ941855

Theonella swinhoei (sponge) isolate TS07, FJ941880
Haliclona simulans (sponge) isolate CMCG14, EU594369

Haliclona simulans (sponge) isolate CMCA18, EU594372
soil isolate, JX121089

Hypocrea atroviridis strain SMF−H08, JX242484
Phakellia fusca (sponge) isolate PF04, FJ941853
Haliclona simulans (sponge) isolate CMCG7, EU594373

Haliclona melana (sponge) isolate HaVI, FJ477271
plant isolate, JQ837838

230 WNS(424) P(0/1/0) X(5/0/0) M(10/3/2) WMS(1) F(5/0/0) A(0/2/17), MF094410
Axinella sp. (sponge) isolate 7C50, EU159531

Phakellia fusca (sponge) isolate PF05, FJ941854
Theonella swinhoei (sponge) isolate TS02, FJ941875

Scopulariopsis brevicaulis (arsenic fungus), FJ941857
Ceratocystiopsis minuta, HQ202313

119 F(0/3/0), MF094411
Grosmannia davidsonii, HQ634816

Phakellia fusca (sponge) isolate PF18, FJ941865
Phakellia fusca (sponge) isolate PF02, FJ941852

Haliclona simulans (sponge) isolate EC4, EU594375
Haliclona melana (sponge) isolate HaIV, FJ477270

Hymeniacidon heliophila (sponge) isolate HyII, FJ477272
Haliclona simulans (sponge) isolate CMCA17, EU594367

Hymeniacidon heliophila (sponge) isolate HyV, FJ477277
Haliclona simulans (sponge) isolate MEG9, EU594368

lake clone, JQ689442
328 P(0/3/0), MF094412

plant isolate, GU214570
242 WNS(1) P(0/4/0) F(4/0/4), MF094413

Haliclona simulans (sponge) isolate W14, EU594359
182 F(0/0/5), MF094414

Clavispora lusitaniae, M55526
Clavispora lusitaniae, JQ698900
168 WMS(2) F(0/13/5), MF094415

Metschnikowia sp. MEG3, EU594357

Hymeniacidon heliophilia (sponge) isolate HyIV, FJ477276
Haliclona melana (sponge) isolate HaV, FJ477266

Haliclona simulans (sponge) isolate  GPG1, EU594371
Haliclona simulans (sponge) isolate CMCG10, EU594370

546 M(1/0/1), MF094409

424 WNS(8) P(0/1/0), MF094408
lichen−forming fungi isolate, AJ535296

404 F(29), MF094402

350 WNS(42) P(0/2/10) X(0/1/0) F(4/5/0) A(0/2/0), MF094403

77 F(8/0/0), MF094404

509 WNS(22) F(27/0/0), MF094405

Haliclona simulans (sponge) isolate EC6, EU594376
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Phakellia fusca (sponge) isolate PF10, FJ941858
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Schizocaryum sp. EC13, EU597807
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Haliclona melana (sponge) isolate HaII, FJ477267
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Figure 4 Bayesian phylogram of AscomycotaOTUs found in sponges based on 18S rRNA gene
sequences. Other sequences included are (i) their nearest neighbors, and (ii) 18S rRNA sequences
published by Simister et al. (2012) and Baker et al. (2009). Numbers in parentheses after the sample type
indication refer to the absolute numbers of reads that were included in the corresponding OTU per
sample (34 P(0/0/4) WMS(2) F(4/0/0) means that 4 reads of P3, 2 reads of (continued on next page. . . )
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Figure 4 (. . .continued)
Mediterranean seawater and 4 reads of F1 are included in OTU34). The NCBI genbank accession num-
ber is the last descriptor for each branch. Grey boxes indicate sponge-specific clusters (SSC) as defined by
Simister et al. (2012). Yellow boxes represent yeasts. Taxonomic groups marked with an asterisk (*) indi-
cate non-formal taxonomic classification (i.e., fungal environmental clade LKM11 is not a phylum, but a
group assigned for environmental fungal-like sequences; Lara, Moreira & López-García, 2010). The num-
bers above or below the branches correspond to posterior probability (PP) values of the Bayesian analysis.
Nodes with PP values of < 50 are not indicated.

classified at the order level (Fig. 4). The most abundant non-yeast fungal OTU (OTU344)
belonged to the order Eurotiales and was closely related to fungi previously isolated from
other sponges, but was also present in bothMediterranean andNorth Sea seawater samples.

Sixteen of the 44 fungal OTUs that were detected in sponges were not detected in
seawater. However, only two of these OTUs were represented by more than 10 reads
(Fig. 3). These are OTU392, a yeast belonging to the order Saccharomycetales and OTU404,
a fungus belonging to the order Chaetothyriales. In addition, several fungal OTUs were
found to be present both in seawater and in sponges, but were represented by a higher
number of reads in sponges.OTUs that collected substantiallymore reads in sponges include
the most abundant fungal OTU of the dataset, OTU514 (Malasseziales). Other yeasts that
collected more reads in sponges than in seawater were OTU183 (order Leucosporidiales,
enriched in H. panicea), OTU298 (order Tremellales, enriched in H. panicea) and OTU360
(order Saccharomycetales, enriched in H. panicea, H. xena, S. massa, P. ficiformis, A.
aerophoba). Furthermore, for the non-yeast fungus OTU344 (order Eurotiales) more
reads were obtained from P. ficiformis than from seawater. It should be noted, however,
that these ‘enriched’ fungal OTUs in sponges were also all detected in both North Sea
and Mediterranean seawater and that they were often found in multiple sponge species
(Fig. 3).

DISCUSSION
The large majority of 18S rRNA gene sequences that was obtained from sponges were
derived from the sponge hosts. In total 2,550 fungal reads were obtained from the sponges
investigated (including the reads obtained as singletons). These reads represented less than
0.75% of all the reads that were obtained from the sponges. The number of fungal reads
obtained from the sponge samples in our study was similar to, or exceeded, the number
of fungal reads reported in other studies that have applied next generation sequencing
technology to study fungal diversity in sponges (Passarini et al., 2015; Rodríguez-Marconi
et al., 2015). Therefore, with respect to numbers, these studies are more comparable to past
studies that used clone libraries for diversity estimations of bacterial diversity in sponges
(Hentschel et al., 2002; Sipkema & Blanch, 2010) than to studies that apply next generation
sequencing technology. That implies that the interpretation and discussion of our results
remains mostly limited to qualitative statements as the limited statistical power based
on the data did generally not allow quantitative statements. However, one quantitative
statement that can be made for the seven sponges studied here is that with the exception
of P. ficiformis the number of fungal reads was very low in comparison to the number of
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sponge reads (2,550 reads vs. 330,884 reads). This is in line with the low relative abundance
of fungi in nineteen other sponge species that were assessed by cultivation-independent
methods (Gao et al., 2008; He et al., 2014; Passarini et al., 2015; Rodríguez-Marconi et al.,
2015; Wang et al., 2014). The low number of fungal reads also corraborates the lack of
microscopic observation of fungi reported from sponge tissues. These low numbers and
lack of observations are in sharp contrast to the numbers of bacteria that are present in
especially high-microbial-abundance sponges, and which may account for up to 38% of
the sponge tissue volume (Vacelet & Donadey, 1977).

When analysing the fungal OTUs associated with the sponges, many OTUs were found
across different sponge species, across sample types (sponges and seawater) and across
geographical regions (Fig. 3). This fungal diversity pattern opposes the bacterial diversity
patterns that have been obtained for these sponge species in which every sponge species
was observed to have a large fraction of sponge species-specific bacteria, i.e., bacteria
found in only one of the sponge species and not or barely found in seawater (Naim et
al., 2014; Schmitt, Hentschel & Taylor, 2012; Sipkema et al., 2015). The dominant fungal
OTU encountered (OTU514) was a yeast belonging to the order Malasseziales, and it was
found in all sponges from which fungal reads were obtained. The Malasseziales were also
found to be the dominant order in cultivation-independent fungal diversity studies of
the sponges Dragmacidon reticulatum (Passarini et al., 2015), Suberites zeteki and Mycale
armata (Gao et al., 2008). It is interesting to note that the nearest neighbours of OTU514
all refer to sequences that have been obtained by cultivation-independent methods (Fig. 5
and Table S3). This observation implies that the dominant fungi observed in sponges are
different from the ones obtained through cultivation. That suggests that the ‘great plate
anomaly’ that is known to exist for bacteria in sponges also may be true for fungi found
in sponges (Schippers et al., 2012; Sipkema et al., 2011). However, the fact that these yeasts
are found in many different sponge species do not yet qualify them as ‘sponge-specific’ or
‘sponge-enriched’ fungi as revisited by Simister et al. (2012) as the same or highly similar
sequences have been obtained from seawater samples in this study and seawater samples
from other studies (Fig. 5 and Table S3). Therefore, it is likely thatMalasseziales are found
in sponges because they are filtered from the seawater rather than because they are in a
symbiotic relationship with the sponge host.

Without discussing all OTUs that were found in sponges individually, it can be said that
28 of the 44 fungal OTUs that were observed in sponges were also detected in corresponding
seawater samples and that these OTUs represented 97.7% of the fungal reads found in
sponges (Fig. 3). The two OTUs that represented >10 reads in sponges and were not
found in our seawater samples (OTU392 and OTU404) were found most closely related
to fungal 18S rRNA gene sequences obtained from anaerobic sludge or rock-inhabiting
fungi (Fig. 5 and Table S3). Therefore, it appears that most—if not all—fungal OTUs
obtained in this study are not specifically associated to sponges and that they cannot be
classified as ‘sponge-specific’ or ‘sponge-enriched’ according to the pioneering review
by Simister et al. (2012). Three sponge-specific clusters of fungi were proposed by the
latter authors (these clusters are indicated in Fig. 4). A remarkable aspect of the fungi
in these proposed clusters is that they are all derived from fungal isolates and not from
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lake clone, JQ689419

298 WNS(2) P(0/0/56) X(0/0/2) WMS(6), MF094438
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seawater clone, GU823324

Suberites zeteki (sponge) clone 7−1−1, EU085017
Suberites zeteki (sponge) clone 8−2−5, EU085016
Suberites zeteki (sponge) clone 8−1p−11, EU085018

plant isolate, AJ496256
Rhodotorula acheniorum, AB038128

499 P(0/0/5), MF094426
plant isolate, AJ535501

Sympodiomycopsis paphiopedili, DQ832239
552 WNS(89) P(0/1/0) M(1/0/0), MF094427

Hymenopellis furfuracea, DQ089015
Hymenopellis radicata, AY654884
196 WNS(1) P(0/0/1), MF094428
soil isolate, HQ832426

Phakellia fusca (sponge) isolate PF19, FJ941866
Haliclona simulans (sponge) isolate MEG2, EU594356

Haliclona simulans (sponge) isolate MEG7, EU594355
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Figure 5 Bayesian phylogram of BasidiomycotaOTUs found in sponges based on 18S rRNA gene
sequences. For additional information see the legend of Fig. 4.

sequences obtained by cultivation-independent means. This is in sharp contrast to their
bacterial and archaeal counterparts, as sponge-specific clusters in the domains Bacteria
and Archaea were nearly all obtained from clone libraries (see Supplementary figures
in Simister et al. (2012)). The state of the art is that we currently know very little about
fungi from sponges. Based on the data shown here and other cultivation-independent
studies targeting sponge-associated fungi (Gao et al., 2008; He et al., 2014; Passarini et al.,
2015; Rodríguez-Marconi et al., 2015) there are indications that we know very little because
there is little to be known. The combination of low numbers of fungal reads retrieved
from sponges with their unspecific nature based on the currently available data point
towards merely accidental presence of fungi in sponges. On the other hand there are a few
examples that would advocate a more symbiotic relationship between sponges and fungi.
The first record is an unidentified encrusting sponge that grows on top of fungi belonging
to the genus Koralionastes (Kohlmeyer & Volkmann-Kohlmeyer, 1990). The second lead
stems from the microscopic observations of yeasts that are maternally transmitted in
three sponge species belonging to the genus Chondrilla (Maldonado et al., 2005). A better
understanding of potential specific sponge-fungi relationships would benefit from further
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exploring these two known relationships. Also for other marine invertebrates, such as
corals and tunicates, the nature and consistency of the relationship between the fungi
encountered and their hosts have remained unresolved (Yarden, 2014). The still ongoing
(meta)genomics revolution may be key to shedding light on these aspects (Scazzocchio,
2014).
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