46 research outputs found

    Source contributions to 2012 summertime aerosols in the Euro-Mediterranean region

    Get PDF
    International audienceIn the Mediterranean area, aerosols may originate from anthropogenic or natural emissions (biogenic, mineral dust, fire and sea salt) before undergoing complex chemistry. In case of a huge pollution event, it is important to know whether European pollution limits are exceeded and, if so, whether the pollution is due to anthropogenic or natural sources. In this study, the relative contribution of emissions to surface PM10, surface PM2.5 and total aerosol optical depth (AOD) is quantified. For Europe and the Mediterranean regions and during the summer of 2012, the WRF and CHIMERE models are used to perform a sensitivity analysis on a 50 km resolution domain (from −10° W to 40° E and from 30° N to 55° N): one simulation with all sources (reference) and all others with one source removed. The reference simulation is compared to data from the AirBase network and two ChArMEx stations, and from the AERONET network and the MODIS satellite instrument, to quantify the ability of the model to reproduce the observations. It is shown that the correlation ranges from 0.19 to 0.57 for surface particulate matter and from 0.35 to 0.75 for AOD. For the summer of 2012, the model shows that the region is mainly influenced by aerosols due to mineral dust and anthropogenic emissions (62 and 19 %, respectively, of total surface PM10 and 17 and 52 % of total surface PM2.5). The western part of the Mediterranean is strongly influenced by mineral dust emissions (86 % for surface PM10 and 44 % for PM2.5), while anthropogenic emissions dominate in the northern Mediterranean basin (up to 75 % for PM2.5). Fire emissions are more sporadic but may represent 20 % of surface PM2.5, on average, during the period near local sources. Sea salt mainly contributes for coastal sites (up to 29 %) and biogenic emissions mainly in central Europe (up to 20 %)

    Fractional Echoes

    Full text link
    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses

    Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments

    Get PDF
    The aerosol optical depth (AOD) is a derived measurement useful to investigate the aerosol load and its distribution at different spatio-temporal scales. In this work we use long-term (2000–2021) MAIAC (Multi-Angle Implementation of Atmospheric Correction) retrievals with 1 km resolution to investigate the climatological AOD variability and trends at different scales in Europe: a continental (30–60∘ N, 20∘ W–40∘ E), a regional (100 × 100 km2) and an urban–local scale (3 × 3 km2). The AOD climatology at the continental scale shows the highest values during summer (JJA) and the lowest during winter (DJF) seasons. Regional and urban–local scales are investigated for 21 cities in Europe, including capitals and large urban agglomerations. Analyses show AOD average (550 nm) values between 0.06 and 0.16 at the urban–local scale while also displaying a strong north–south gradient. This gradient corresponds to a similar one in the European background, with higher AOD being located over the Po Valley, the Mediterranean Basin and eastern Europe. Average enhancements of the local with respect to regional AOD of 57 %, 55 %, 39 % and 32 % are found for large metropolitan centers such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions. Negative average deviations are observed for other cities, such as Amsterdam (−17 %) and Brussels (−6 %), indicating higher regional background signal and suggesting a heterogeneous aerosol spatial distribution that conceals the urban–local signal. Finally, negative statistically significant AOD trends for the entire European continent are observed. A stronger decrease rate at the regional scale with respect to the local scale occurs for most of the cities under investigation.</p

    Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions

    Get PDF
    We investigate how the representation of the boundary layer in a climate model impacts the representation of the near-surface wind and dust emission, with a focus on the Sahel/Sahara region. We show that the combination of vertical turbulent diffusion with a representation of the thermal cells of the convective boundary layer by a mass flux scheme leads to realistic representation of the diurnal cycle of wind in spring, with a maximum near-surface wind in the morning. This maximum occurs when the thermal plumes reach the low-level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidence around thermal plumes in typically less than 1 h. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong nonlinearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model coupled to the emission module of the CHIMERE chemistry transport model, in which winds are relaxed toward that of the ERA-Interim reanalyses. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyses used for nudging themselves. It also generates dust emissions in better agreement with current estimates, but the aerosol optical thickness is still significantly underestimated

    Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns

    Get PDF
    International audienceNitrous acid measurements were carried out during the MEGAPOLI summer and winter field campaigns at SIRTA observatory in Paris surroundings. Highly variable HONO levels were observed during the campaigns, ranging from 10 ppt to 500 ppt in summer and from 10 ppt to 1.7 ppb in winter. Significant HONO mixing ratios have also been measured during daytime hours, comprised between some tenth of ppt and 200 ppt for the summer campaign and between few ppt and 1 ppb for the winter campaign. Ancillary measurements, such as NOx , O3 , photolysis frequencies, meteorological parameters (pressure, temperature, relative humidity , wind speed and wind direction), black carbon concentration , total aerosol surface area, boundary layer height and soil moisture, were conducted during both campaigns. In addition, for the summer period, OH radical measurements were made with a CIMS (Chemical Ionisation Mass Spectrometer). This large dataset has been used to investigate the HONO budget in a suburban environment. To do so, calculations of HONO concentrations using PhotoStationary State (PSS) approach have been performed, for daytime hours. The comparison of these calculations with measured HONO concentrations revealed an underestimation of the calculations making evident a missing source term for both campaigns. This unknown HONO source exhibits a bell-shaped like average diurnal profile with a maximum around noon of approximately 0.7 ppb h−1 and 0.25 ppb h−1 , during summer and winter respectively. This source is the main HONO source during daytime hours for both campaigns. In both cases, this source shows a slight positive correlation with J (NO2) and the product between J (NO2) and soil moisture. This original approach had, thus, indicated that this missing source is photolytic and might be heterogeneous occurring at ground surface and involving water content available on the ground. Published by Copernicus Publications on behalf of the European Geosciences Union. 2806 V. Michoud et al.: Study of the unknown HONO daytime sourc

    Evaluation of receptor and chemical transport models for PM10 source apportionment

    Get PDF
    In this study, the performance of two types of source apportionment models was evaluated by assessing the results provided by 40 different groups in the framework of an intercomparison organised by FAIRMODE WG3 (Forum for air quality modelling in Europe, Working Group 3). The evaluation was based on two performance indicators: z-scores and the root mean square error weighted by the reference uncertainty (RMSEu), with pre-established acceptability criteria. By involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), the intercomparison provided a unique opportunity for their cross-validation. In addition, comparing the CTM chemical profiles with those measured directly at the source contributed to corroborate the consistency of the tested model results. The most commonly used RM was the US EPA- PMF version 5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) while more difficulties were observed with the source contribution time series (72% of RMSEu accepted). Industrial activities proved to be the most difficult sources to be quantified by RMs, with high variability in the estimated contributions. In the CTMs, the sum of computed source contributions was lower than the measured gravimetric PM10 mass concentrations. The performance tests pointed out the differences between the two CTM approaches used for source apportionment in this study: brute force (or emission reduction impact) and tagged species methods. The sources meeting the z-score and RMSEu acceptability criteria tests were 50% and 86%, respectively. The CTM source contributions to PM10 were in the majority of cases lower than the RM averages for the corresponding source. The CTMs and RMs source contributions for the overall dataset were more comparable (83% of the z-scores accepted) than their time series (successful RMSEu in the range 25% - 34%). The comparability between CTMs and RMs varied depending on the source: traffic/exhaust and industry were the source categories with the best results in the RMSEu tests while the most critical ones were soil dust and road dust. The differences between RMs and CTMs source reconstructions confirmed the importance of cross validating the results of these two families of models

    Results of the first European Source Apportionment intercomparison for Receptor and Chemical Transport Models

    Get PDF
    In this study, the performance of the source apportionment model applications were evaluated by comparing the model results provided by 44 participants adopting a methodology based on performance indicators: z-scores and RMSEu, with pre-established acceptability criteria. Involving models based on completely different and independent input data, such as receptor models (RMs) and chemical transport models (CTMs), provided a unique opportunity to cross-validate them. In addition, comparing the modelled source chemical profiles, with those measured directly at the source contributed to corroborate the chemical profile of the tested model results. The most used RM was EPA- PMF5. RMs showed very good performance for the overall dataset (91% of z-scores accepted) and more difficulties are observed with SCE time series (72% of RMSEu accepted). Industry resulted the most problematic source for RMs due to the high variability among participants. Also the results obtained with CTMs were quite comparable to their ensemble reference using all models for the overall average (>92% of successful z-scores) while the comparability of the time series is more problematic (between 58% and 77% of the candidates’ RMSEu are accepted). In the CTM models a gap was observed between the sum of source contributions and the gravimetric PM10 mass likely due to PM underestimation in the base case. Interestingly, when only the tagged species CTM results were used in the reference, the differences between the two CTM approaches (brute force and tagged species) were evident. In this case the percentage of candidates passing the z-score and RMSEu tests were only 50% and 86%, respectively. CTMs showed good comparability with RMs for the overall dataset (83% of the z-scores accepted), more differences were observed when dealing with the time series of the single source categories. In this case the share of successful RMSEu was in the range 25% - 34%.JRC.C.5-Air and Climat

    Homogeneized modeling of mineral dust emissions over Europe and Africa using the CHIMERE model

    No full text
    International audienceIn the region including Africa and Europe, the main part of mineral dust emissions is observed in Africa. The particles are thus transported towards Europe and constitute a non-negligible part of the surface aerosols measured and controlled in the framework of the European air quality legislation. The modelling of these African dust emissions fluxes and transport is widely studied and complex parameterizations are already used in regional to global model for this Sahara-Sahel region. In a lesser extent, mineral dust emissions occur locally in Europe, mainly over agricultural areas. Their modelling is generally poorly done or just ignored. But in some cases, this contribution may be important and may impact the European air quality budget. In this study, we propose an homogeneized calculations of mineral dust fluxes for Europe and Africa. For that, we extended the CHIMERE dust production model (DPM) by using new soil and surface datasets, and the global aeolian roughness length dataset provided by GARLAP from microwave and visible satellite observations. This DPM is detailed along with academic tests case results and simulation on a real case results

    Homogeneized modeling of mineral dust emissions over Europe and Africa using the CHIMERE model

    No full text
    International audienceIn the region including Africa and Europe, the main part of mineral dust emissions is observed in Africa. The particles are thus transported towards Europe and constitute a non-negligible part of the surface aerosols measured and controlled in the framework of the European air quality legislation. The modelling of these African dust emissions fluxes and transport is widely studied and complex parameterizations are already used in regional to global model for this Sahara-Sahel region. In a lesser extent, mineral dust emissions occur locally in Europe, mainly over agricultural areas. Their modelling is generally poorly done or just ignored. But in some cases, this contribution may be important and may impact the European air quality budget. In this study, we propose an homogeneized calculations of mineral dust fluxes for Europe and Africa. For that, we extended the CHIMERE dust production model (DPM) by using new soil and surface datasets, and the global aeolian roughness length dataset provided by GARLAP from microwave and visible satellite observations. This DPM is detailed along with academic tests case results and simulation on a real case results
    corecore