39 research outputs found

    Effects of environmental variability and offspring growth on the movement ecology of breeding Scopoli's shearwater Calonectris diomedea

    Get PDF
    Abstract Most seabird species display colonial behavior during the breeding period which implies that food resources around breeding sites can easily go depleted. Seabirds need to both reach profitable areas, which can be located far from the colony, and return to the colony regularly. In this context, flexibility in movement behavior may be crucial for breeding success. During chick-rearing, Procellariformes species can alternate short trips lasting 1–4 days for chick provisioning with longer trips for self-provisioning in what has been called a dual-foraging strategy. We analyzed foraging trips from 136 Scopoli's shearwaters from three Mediterranean colonies tracked with GPS during 6 chick-rearing seasons to assess whether the adoption of a dual foraging strategy depends on the quality of habitat surrounding the colony. We found a marked dual-foraging strategy only in birds from the Linosa colony which was the largest colony in terms of breeding pairs and was characterized by having a lower marine habitat quality. Birds from this colony performed foraging trips that extended up to 369 km from the nest and lasted more than 10 days. In general, the decision to perform long lasting trips was triggered by lower values of primary production and higher offspring weight. Contrary to expectation, the decision to feed far from the colony was not related to the parents' weight. At the same time, despite the higher productivity offered by distant areas, the higher proportion of long trips performed by birds breeding in poor areas was not sufficient to maintain the same body mass as the ones breeding in richer areas

    Effects of weather and hunting on wild reindeer population dynamics in Hardangervidda National Park

    Get PDF
    Wild reindeer have a range that extends across the circumpolar region. In the last few decades, however, populations of wild reindeer have been on the decline. The reasons for these declines are poorly understood, but are suggested to be linked to both local and global climatic factors, disease, and human interference. Hardangervidda plateau in Norway is home to the largest wild reindeer population in Europe, and is at the southern end of its European range. This population is therefore of particular importance, particularly in the light of climate change. We investigated how weather and hunting have affected the wild reindeer population in Hardangervidda over the last two decades. Our findings suggest that the wild reindeer population in Hardangervidda is most affected by winter temperature and hunting, where colder temperatures and lower harvest rates typically result in higher growth rates. We did not find significant evidence for linear density dependence. Our results show trends across Hardangervidda, and give an indication of how region-wide weather and hunting pressure can affect the wild reindeer population. As new data emerge, future investigations should look into the existence and nature of density dependence and the influence of other weather and human disturbance related factors

    Size-assortative mating in a long-lived monogamous seabird

    Get PDF
    Mate choice is a key process in animals to optimize the ftness benefts of reproduction, and it is generally guided by phenotypic features of potential partners that mirror reproductive abilities. Assortative mating occurs when there is within-pair selection for specifc functional traits that can confer ftness benefts. Assortative mating can be positive if mates are more similar, and negative if they are more dissimilar than expected by chance. Mate choice is particularly important in long-lived species with biparental care, such as procellariforms that form long term monogamous bonds. We assessed the mating strategy of a sexually dimorphic Mediterranean procellariform, the Scopoli’s Shearwater (Calonectris diomedea), by testing for assortative mating according to bill (in accordance with previous studies on a sister species) and tarsus size (proxy of body size). We found that shearwaters adopted a positive size-assortative mating by tarsus length, while mating for bill size was random. Moreover, tarsus length was positively correlated with the duration of incubation shifts, when individuals are fasting on eggs. The observed assortative mating could be the results of choice by similarity between individuals, likely because partners with similar relative size have similar tolerance to fasting. Alternatively, the observed pattern could be the product of mutual mate choice, with a selection for large size that could confer competitive abilities in nest selection, defense, foraging aggregations and fasting ability. While our data suggest strong assortative mating in the Scopoli’s Shearwater (R=0.4), we cannot fully disentangle the multiple processes at play acting on mate choice.Fundação para a Ciência e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    Weather, sex and body condition affect post‑fledging migration behaviour of the greater flamingo Phoenicopterus roseus

    Get PDF
    Abstract Background Understanding which intrinsic and extrinsic factors dictate decision-making processes such as leaving the natal area or not (migratory vs resident strategy), departure time, and non-breeding destination are key-issues in movement ecology. This is particularly relevant for a partially migratory meta-population in which only some individuals migrate. Methods We investigated these decision making-processes for 40 juvenile greater flamingos Phoenicopterus roseus fledged in three Mediterranean colonies and equipped with GPS-GSM devices. Results Contrary to the body size and the dominance hypotheses, juveniles in better body condition were more likely to migrate than those in worse conditions, which opted for a residence strategy. Flamingo probability of departure was not associated with an increase in local wind intensity, but rather with the presence of tailwinds with departure limited to night-time mostly when the wind direction aligned with the migratory destination. Moreover, a positive interaction between tailwind speed and migration distance suggested that juveniles opted for stronger winds when initiating long-distance journeys. In contrast to previous studies, the prevailing seasonal winds were only partially aligned with the migratory destination, suggesting that other factors (e.g., adults experience in mix-aged flocks, availability of suitable foraging areas en route, density-dependence processes) may be responsible for the distribution observed at the end of the first migratory movement. We found potential evidence of sex-biased timing of migration with females departing on average 10 days later and flying ca. 10 km/h faster than males. Female flight speed, but not male one, was positively influenced by tailwinds, a pattern most likely explained by sexual differences in mechanical power requirements for flight (males being ca. 20% larger than females). Furthermore, juveniles considerably reduced their flight speeds after 400 km from departure, highlighting a physiological threshold, potentially linked to mortality risks when performing long-distance non-stop movements. Conclusion These results suggest that not only intrinsic factors such as individual conditions and sex, but also extrinsic factors like weather, play critical roles in triggering migratory behaviour in a partially migratory metapopulation

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
    corecore