305 research outputs found

    New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile

    Get PDF
    Iron oxide-apatite (IOA) or Kiruna-type deposits are an important source of iron and other elements including REE, U, Ag, and Co. The genesis of these deposits remains controversial, with models that range from a purely magmatic origin to others that involve variable degrees of hydrothermal fluid involvement. To elucidate the formation processes of this deposit type, we focused on the Chilean Iron Belt of Cretaceous age and performed geochemical analyses on samples from El Romeral, one of the largest IOA deposits in northern Chile. We present a comprehensive field emission electron microprobe analysis (FE-EMPA) dataset of magnetite, apatite, actinolite, pyroxene, biotite, pyrite, and chalcopyrite, obtained from representative drill core samples. Two different types of magnetite grains constitute the massive magnetite bodies: an early inclusion-rich magnetite (Type I); and a pristine, inclusion-poor magnetite (Type II) that usually appears as an overgrowth around Type I magnetite. High V (∌2500-2800 ppm) and Ti concentrations (∌80-3000 ppm), and the presence of high-temperature silicate mineral inclusions (e.g., pargasite, ∌800-1020°C) determined by micro-Raman analysis indicate a magmatic origin for Type I magnetite. On the other hand, high V (2300-2700 ppm) and lower Ti (50-400 ppm) concentrations of pristine, inclusion-poor Type-II magnetite indicate a shift from magmatic to hydrothermal conditions for this mineralization event. Furthermore, the composition of primary actinolite (Ca- and Mg-rich cores) within Type-II magnetite, the presence of F-rich apatite and high Co:Ni ratios (>1-10) of late stage pyrite mineralization are consistent with a high temperature (up to 840°C) genesis for the deposit. At shallow depths of the deposit, the presence of pyrite with low Co:Ni ratios (<0.5) and OH-rich apatite which contains higher Cl concentrations relative to F record a dominance of lower temperature hydrothermal conditions (<600°C) and a lesser magmatic contribution. This vertical zonation, which correlates with the sub-vertical shape of the massive iron ore bodies, is concordant with a transition from magmatic to hydrothermal domains described in several IOA deposits along the Chilean Iron Belt, and supports a magmatic-hydrothermal model for the formation of the El Romeral. The close spatial and temporal association of the deposit with the Romeral Fault System suggests that a pressure drop related to changes in the tectonic stress had a significant impact on Fe solubility, triggering ore precipitation

    Biomaterials from beer manufacture waste for bone growth scaffolds

    Get PDF
    Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, they have proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presently in use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials. In this study, several techniques, including X-ray diffraction (XRD), chemical analysis, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and bioassays, were used to compare the biocompatibility and cell growth of scaffolds produced from beer bagasse, a waste material from beer production, with a control sample used in bone and dental regenerative processes

    The relationship between physical activity, apolipoprotein e ϔ4 carriage, and brain health

    Get PDF
    Background: Neuronal hyperexcitability and hypersynchrony have been described as key features of neurophysiological dysfunctions in the Alzheimer's disease (AD) continuum. Conversely, physical activity (PA) has been associated with improved brain health and reduced AD risk. However, there is controversy regarding whether AD genetic risk (in terms of APOE ϔ4 carriage) modulates these relationships. The utilization of multiple outcome measures within one sample may strengthen our understanding of this complex phenomenon. Method: The relationship between PA and functional connectivity (FC) was examined in a sample of 107 healthy older adults using magnetoencephalography. Additionally, we explored whether ϔ4 carriage modulates this association. The correlation between FC and brain structural integrity, cognition, and mood was also investigated. Results: A relationship between higher PA and decreased FC (hyposynchrony) in the left temporal lobe was observed among all individuals (across the whole sample, in ϔ4 carriers, and in ϔ4 non-carriers), but its effects manifest differently according to genetic risk. In ϔ4 carriers, we report an association between this region-specific FC profile and preserved brain structure (greater gray matter volumes and higher integrity of white matter tracts). In this group, decreased FC also correlated with reduced anxiety levels. In ϔ4 non-carriers, this profile is associated with improved cognition (working and episodic memory). Conclusions: PA could mitigate the increase in FC (hypersynchronization) that characterizes preclinical AD, being beneficial for all individuals, especially ϔ4 carriers.This study was funded by the Spanish Ministry of Economy and Competitiveness under the Grant PSI2015-68793-C3-1-R [D601] and by the project B2017/BMD-3760 from NEUROCENTRO. Complimentary, it was supported by a predoctoral fellowship from La Caixa Foundation to JFL, a postdoctoral fellowship from the Spanish Ministry of Economy and Competitiveness to PC (FJCI-2015-26755), a grant from the Spanish Ministry of Science, Innovation and Universities to JVR (FJCI-2017-33396), and a predoctoral grant by the Spanish Ministry of Economy (BES-2016-076869) to FRT

    Age and APOE genotype affect the relationship between objectively measured physical activity and power in the alpha band, a marker of brain disease

    Get PDF
    BACKGROUND: Electrophysiological studies show that reductions in power within the alpha band are associated with the Alzheimer\u27s disease (AD) continuum. Physical activity (PA) is a protective factor that has proved to reduce AD risk and pathological brain burden. Previous research has confirmed that exercise increases power in the alpha range. However, little is known regarding whether other non-modifiable risk factors for AD, such as increased age or APOE Δ4 carriage, alter the association between PA and power in the alpha band. METHODS: The relationship between PA and alpha band power was examined in a sample of 113 healthy adults using magnetoencephalography. Additionally, we explored whether Δ4 carriage and age modulate this association. The correlations between alpha power and gray matter volumes and cognition were also investigated. RESULTS: We detected a parieto-occipital cluster in which PA positively correlated with alpha power. The association between PA and alpha power remained following stratification of the cohort by genotype. Younger and older adults were investigated separately, and only younger adults exhibited a positive relationship between PA and alpha power. Interestingly, when four groups were created based on age (younger-older adult) and APOE (E3/E3-E3/E4), only younger E3/E3 (least predicted risk) and older E3/E4 (greatest predicted risk) had associations between greater alpha power and higher PA. Among older E3/E4, greater alpha power in these regions was associated with improved memory and preserved brain structure. CONCLUSION: PA could protect against the slowing of brain activity that characterizes the AD continuum, where it is of benefit for all individuals, especially E3/E4 older adults

    Vaccines as alternatives to antibiotics for food producing animals. Part 1:challenges and needs

    Get PDF
    Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential

    Dense carbon monoliths for supercapacitors with outstanding volumetric capacitances

    Get PDF
    A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.Financial support from projects MAT2011-25198, MP1004 and PROMETEO/2009/047 is gratefully acknowledged. V.B. thanks MINECO for R&C contract

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • 

    corecore