770 research outputs found
Estimates for the Cauchy matrix of perturbed linear impulsive equation
Estimates for the Cauchy matrix of a perturbed linear impulsive equation are obtained for given estimates for the Cauchy matrix of the corresponding unperturbed linear impulsive equation
FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers
\ua9 2021 by the authors. Licensee MDPI, Basel, Switzerland.FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemother-apy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β. FEN1 depletion, gene inactivation, or inhibition re-sensitizes platinum-resistant ovarian cancer cells to cisplatin. BRCA2 deficient cells exhibited synthetic lethality upon treatment with a FEN1 inhibitor. FEN1 inhibitor-resistant PEO1R cells were generated, and these reactivated BRCA2 and overexpressed the key repair proteins, POLβ and XRCC1. FEN1i treatment was selectively toxic to POLβ deficient but not XRCC1 deficient ovarian cancer cells. High throughput screening of 391,275 compounds identified several FEN1 inhibitor hits that are suitable for further drug development. We conclude that FEN1 is a valid target for ovarian cancer therapy
Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science
The INBIOSA project brings together a group of experts across many disciplines
who believe that science requires a revolutionary transformative
step in order to address many of the vexing challenges presented by the
world. It is INBIOSA’s purpose to enable the focused collaboration of an
interdisciplinary community of original thinkers.
This paper sets out the case for support for this effort. The focus of the
transformative research program proposal is biology-centric. We admit
that biology to date has been more fact-oriented and less theoretical than
physics. However, the key leverageable idea is that careful extension of the
science of living systems can be more effectively applied to some of our
most vexing modern problems than the prevailing scheme, derived from
abstractions in physics. While these have some universal application and
demonstrate computational advantages, they are not theoretically mandated
for the living. A new set of mathematical abstractions derived from biology
can now be similarly extended. This is made possible by leveraging
new formal tools to understand abstraction and enable computability. [The
latter has a much expanded meaning in our context from the one known
and used in computer science and biology today, that is "by rote algorithmic
means", since it is not known if a living system is computable in this
sense (Mossio et al., 2009).] Two major challenges constitute the effort.
The first challenge is to design an original general system of abstractions
within the biological domain. The initial issue is descriptive leading to the
explanatory. There has not yet been a serious formal examination of the
abstractions of the biological domain. What is used today is an amalgam;
much is inherited from physics (via the bridging abstractions of chemistry)
and there are many new abstractions from advances in mathematics (incentivized
by the need for more capable computational analyses). Interspersed
are abstractions, concepts and underlying assumptions “native” to biology
and distinct from the mechanical language of physics and computation as
we know them. A pressing agenda should be to single out the most concrete
and at the same time the most fundamental process-units in biology
and to recruit them into the descriptive domain. Therefore, the first challenge
is to build a coherent formal system of abstractions and operations
that is truly native to living systems.
Nothing will be thrown away, but many common methods will be philosophically
recast, just as in physics relativity subsumed and reinterpreted
Newtonian mechanics.
This step is required because we need a comprehensible, formal system to
apply in many domains. Emphasis should be placed on the distinction between
multi-perspective analysis and synthesis and on what could be the
basic terms or tools needed.
The second challenge is relatively simple: the actual application of this set
of biology-centric ways and means to cross-disciplinary problems. In its
early stages, this will seem to be a “new science”.
This White Paper sets out the case of continuing support of Information
and Communication Technology (ICT) for transformative research in biology
and information processing centered on paradigm changes in the epistemological,
ontological, mathematical and computational bases of the science
of living systems. Today, curiously, living systems cannot be said to
be anything more than dissipative structures organized internally by genetic
information. There is not anything substantially different from abiotic
systems other than the empirical nature of their robustness. We believe that
there are other new and unique properties and patterns comprehensible at
this bio-logical level. The report lays out a fundamental set of approaches
to articulate these properties and patterns, and is composed as follows.
Sections 1 through 4 (preamble, introduction, motivation and major biomathematical
problems) are incipient. Section 5 describes the issues affecting
Integral Biomathics and Section 6 -- the aspects of the Grand Challenge
we face with this project. Section 7 contemplates the effort to
formalize a General Theory of Living Systems (GTLS) from what we have
today. The goal is to have a formal system, equivalent to that which exists
in the physics community. Here we define how to perceive the role of time
in biology. Section 8 describes the initial efforts to apply this general theory
of living systems in many domains, with special emphasis on crossdisciplinary
problems and multiple domains spanning both “hard” and
“soft” sciences. The expected result is a coherent collection of integrated
mathematical techniques. Section 9 discusses the first two test cases, project
proposals, of our approach. They are designed to demonstrate the ability
of our approach to address “wicked problems” which span across physics,
chemistry, biology, societies and societal dynamics. The solutions
require integrated measurable results at multiple levels known as “grand
challenges” to existing methods. Finally, Section 10 adheres to an appeal
for action, advocating the necessity for further long-term support of the
INBIOSA program.
The report is concluded with preliminary non-exclusive list of challenging
research themes to address, as well as required administrative actions. The
efforts described in the ten sections of this White Paper will proceed concurrently.
Collectively, they describe a program that can be managed and
measured as it progresses
Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe
Phenotype instability of hepatocyte-like cells produced by direct reprogramming of mesenchymal stromal cells
Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2020-05-20T13:36:52Z
No. of bitstreams: 2
Orge Yasmin Diniz , Phenotype....pdf: 16650804 bytes, checksum: c3eb41edf819fec369deb1d2cfc161da (MD5)
Orge Yasmin Diniz , Phenotype....pdf: 16650804 bytes, checksum: c3eb41edf819fec369deb1d2cfc161da (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2020-05-20T14:09:16Z (GMT) No. of bitstreams: 2
Orge Yasmin Diniz , Phenotype....pdf: 16650804 bytes, checksum: c3eb41edf819fec369deb1d2cfc161da (MD5)
Orge Yasmin Diniz , Phenotype....pdf: 16650804 bytes, checksum: c3eb41edf819fec369deb1d2cfc161da (MD5)Made available in DSpace on 2020-05-20T14:09:16Z (GMT). No. of bitstreams: 2
Orge Yasmin Diniz , Phenotype....pdf: 16650804 bytes, checksum: c3eb41edf819fec369deb1d2cfc161da (MD5)
Orge Yasmin Diniz , Phenotype....pdf: 16650804 bytes, checksum: c3eb41edf819fec369deb1d2cfc161da (MD5)
Previous issue date: 2020Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil.MRC Centre for Regenerative Medicine. Edinburgh, UK.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil / D’Or Institute for Research and Education. Rio de Janeiro, RJ, Brazil.Universidade Federal da Bahia. Institute of Health Sciences. Salvador, BA, Brasil.MRC Centre for Regenerative Medicine. Edinburgh, UK.São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil / D’Or Institute for Research and Education. Rio de Janeiro, RJ, Brazil.São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil / D’Or Institute for Research and Education. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / National Institute of Science and Technology for Regenerative Medicine. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil.MRC Centre for Regenerative Medicine. Edinburgh, UK.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / National Institute of Science and Technology for Regenerative Medicine. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brasil / São Rafael Hospital. Center for Biotechnology and Cell Therapy, Salvador, BA, Brazil / D’Or Institute for Research and Education. Rio de Janeiro, RJ, Brazil / National Institute of Science and Technology for Regenerative Medicine. Rio de Janeiro, RJ, Brazil /Hepatocyte-like cells (iHEPs) generated by transcription factor-mediated direct reprogramming of somatic cells have been studied as potential cell sources for the development of novel therapies targeting liver diseases. The mechanisms involved in direct reprogramming, stability after long-term in vitro expansion, and safety profile of reprogrammed cells in different experimental models, however, still require further investigation. Methods: iHEPs were generated by forced expression of Foxa2/Hnf4a in mouse mesenchymal stromal cells and
characterized their phenotype stability by in vitro and in vivo analyses.
Results: The iHEPs expressed mixed hepatocyte and liver progenitor cell markers, were highly proliferative, and
presented metabolic activities in functional assays. A progressive loss of hepatic phenotype, however, was observed
after several passages, leading to an increase in alpha-SMA+ fibroblast-like cells, which could be distinguished and
sorted from iHEPs by differential mitochondrial content. The resulting purified iHEPs proliferated, maintained liver
progenitor cell markers, and, upon stimulation with lineage maturation media, increased expression of either biliary
or hepatocyte markers. In vivo functionality was assessed in independent pre-clinical mouse models. Minimal
engraftment was observed following transplantation in mice with acute acetaminophen-induced liver injury. In
contrast, upon transplantation in a transgenic mouse model presenting host hepatocyte senescence, widespread
engraftment and uncontrolled proliferation of iHEPs was observed, forming islands of epithelial-like cells, adipocytelike
cells, or cells presenting both morphologies.
Conclusion: The results have significant implications for cell reprogramming, suggesting that iHEPs generated by
Foxa2/Hnf4a expression have an unstable phenotype and depend on transgene expression for maintenance of
hepatocyte-like characteristics, showing a tendency to return to the mesenchymal phenotype of origin and a
compromised safety profil
Canvass: a crowd-sourced, natural-product screening library for exploring biological space
NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors
Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. N(epsilon)-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. N(epsilon)-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors
Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines
AimsModulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy.MethodsAn industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses.ResultsSeveral specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines.ConclusionsOur study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma
- …