9 research outputs found
Classification of Avian Pathogenic Escherichia coli by a Novel Pathogenicity Index Based on an Animal Model
Background: Avian Pathogenic Escherichia coli is the main agent of colibacillosis, a systemic disease that causes considerable economic losses to the poultry industry. In vivo experiments are used to measure the ability of E. coli to be pathogenic. Generally, these experiments have proposed different criteria for results interpretation and did not take into account the death time. The aim of this study was to propose a new methodology for the classification of E. coli pathogenicity by the establishment of a pathogenicity index based in the lethality, death time and the ability of the strain to cause colibacillosis lesions in challenged animals.Materials, Methods & Results: A total of 293 isolates of E. coli were randomly selected to this study. The strains were isolated from cellulitis lesions, broiler bedding material or respiratory diseases and were previously confirmed through biochemical profile. The bacterial isolates were kept frozen at -20°C. The strains were retrieved from stocks and cultured in brain-heart infusion broth overnight at 37°C to obtain a final concentration of 109 UFC/mL. A total of 2940 one-dayold chicks from commercial breeding hens were randomly assigned to groups containing 10 animals and each group was subcutaneously inoculated in the abdominal region with 0.1 mL of the standard inoculum solution containing each of the strains. A control group of 10 broilers were inoculated with 0.1 mL of brain-heart infusion broth by the same route. The chicks were kept for seven days. They were observed at intervals of 6, 12 and 24 h post-inoculation during the first days. From the second day on, the chicks were observed at intervals of 12 h. According to the death time and to the scores of each lesion (aerosaculitis, pericarditis, perihepatitis, peritonitis and cellulitis), a formula to determine the Individual Pathogenicity Index was established. A value of 10 was established as the maximum pathogenicity rate for an inoculated bird. From this rate, 5 points corresponded to scores for gross lesions present at necropsy. For each lesion present, it represents 1 point. The remaining 5 points corresponded to the death time. To obtain the death time value, an index of 1, corresponding to the maximum value assigned to a death on the first day, was divided by the number of days that the birds were evaluated, resulting in a value of 0.1428, which corresponded to a survival bonus factor. It was possible to classify E. coli strains into four pathogenicity groups according to the pathogenicity index: high pathogenicity (pathogenicity index ranging from 7 to 10), intermediate pathogenicity (pathogenicity index ranging from 4 to 6.99), low pathogenicity (pathogenicity index ranging from 1 to 3.99) and apathogenic (pathogenicity index ranging from 0 to 0.99). The analysis of the strains according to their origin revealed that isolates from broiler bedding material presented a lower pathogenicity index.Discussion: It is possible that the source of isolation implies in different results, depending on the criteria adopted. This data reinforces the importance of use a more accurate mathematical model to represents the biological phenomenon. In the study, all avian pathogenic Escherichia coli strains were classified based on a pathogenicity index and the concept of the death time represents an interesting parameter to measure the ability of the strain to promote acute and septicemic manifestation. The use of a support method for poultry veterinary diagnostic accompanying the fluctuation of the bacteria pathogenicity inside the farms may indicate a rational use of antimicrobial in poultry industry
Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences
The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported
by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on
18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based
researchers who signed it in the short time span from 20 September to 6 October 2016
Classification of Avian Pathogenic Escherichia coli by a Novel Pathogenicity Index Based on an Animal Model
Background: Avian Pathogenic Escherichia coli is the main agent of colibacillosis, a systemic disease that causes considerable economic losses to the poultry industry. In vivo experiments are used to measure the ability of E. coli to be pathogenic. Generally, these experiments have proposed different criteria for results interpretation and did not take into account the death time. The aim of this study was to propose a new methodology for the classification of E. coli pathogenicity by the establishment of a pathogenicity index based in the lethality, death time and the ability of the strain to cause colibacillosis lesions in challenged animals.Materials, Methods & Results: A total of 293 isolates of E. coli were randomly selected to this study. The strains were isolated from cellulitis lesions, broiler bedding material or respiratory diseases and were previously confirmed through biochemical profile. The bacterial isolates were kept frozen at -20°C. The strains were retrieved from stocks and cultured in brain-heart infusion broth overnight at 37°C to obtain a final concentration of 109 UFC/mL. A total of 2940 one-dayold chicks from commercial breeding hens were randomly assigned to groups containing 10 animals and each group was subcutaneously inoculated in the abdominal region with 0.1 mL of the standard inoculum solution containing each of the strains. A control group of 10 broilers were inoculated with 0.1 mL of brain-heart infusion broth by the same route. The chicks were kept for seven days. They were observed at intervals of 6, 12 and 24 h post-inoculation during the first days. From the second day on, the chicks were observed at intervals of 12 h. According to the death time and to the scores of each lesion (aerosaculitis, pericarditis, perihepatitis, peritonitis and cellulitis), a formula to determine the Individual Pathogenicity Index was established. A value of 10 was established as the maximum pathogenicity rate for an inoculated bird. From this rate, 5 points corresponded to scores for gross lesions present at necropsy. For each lesion present, it represents 1 point. The remaining 5 points corresponded to the death time. To obtain the death time value, an index of 1, corresponding to the maximum value assigned to a death on the first day, was divided by the number of days that the birds were evaluated, resulting in a value of 0.1428, which corresponded to a survival bonus factor. It was possible to classify E. coli strains into four pathogenicity groups according to the pathogenicity index: high pathogenicity (pathogenicity index ranging from 7 to 10), intermediate pathogenicity (pathogenicity index ranging from 4 to 6.99), low pathogenicity (pathogenicity index ranging from 1 to 3.99) and apathogenic (pathogenicity index ranging from 0 to 0.99). The analysis of the strains according to their origin revealed that isolates from broiler bedding material presented a lower pathogenicity index.Discussion: It is possible that the source of isolation implies in different results, depending on the criteria adopted. This data reinforces the importance of use a more accurate mathematical model to represents the biological phenomenon. In the study, all avian pathogenic Escherichia coli strains were classified based on a pathogenicity index and the concept of the death time represents an interesting parameter to measure the ability of the strain to promote acute and septicemic manifestation. The use of a support method for poultry veterinary diagnostic accompanying the fluctuation of the bacteria pathogenicity inside the farms may indicate a rational use of antimicrobial in poultry industry
Classification of Avian Pathogenic Escherichia coli by a Novel Pathogenicity Index Based on an Animal Model
Background: Avian Pathogenic Escherichia coli is the main agent of colibacillosis, a systemic disease that causes considerable economic losses to the poultry industry. In vivo experiments are used to measure the ability of E. coli to be pathogenic. Generally, these experiments have proposed different criteria for results interpretation and did not take into account the death time. The aim of this study was to propose a new methodology for the classification of E. coli pathogenicity by the establishment of a pathogenicity index based in the lethality, death time and the ability of the strain to cause colibacillosis lesions in challenged animals.Materials, Methods & Results: A total of 293 isolates of E. coli were randomly selected to this study. The strains were isolated from cellulitis lesions, broiler bedding material or respiratory diseases and were previously confirmed through biochemical profile. The bacterial isolates were kept frozen at -20°C. The strains were retrieved from stocks and cultured in brain-heart infusion broth overnight at 37°C to obtain a final concentration of 109 UFC/mL. A total of 2940 one-dayold chicks from commercial breeding hens were randomly assigned to groups containing 10 animals and each group was subcutaneously inoculated in the abdominal region with 0.1 mL of the standard inoculum solution containing each of the strains. A control group of 10 broilers were inoculated with 0.1 mL of brain-heart infusion broth by the same route. The chicks were kept for seven days. They were observed at intervals of 6, 12 and 24 h post-inoculation during the first days. From the second day on, the chicks were observed at intervals of 12 h. According to the death time and to the scores of each lesion (aerosaculitis, pericarditis, perihepatitis, peritonitis and cellulitis), a formula to determine the Individual Pathogenicity Index was established. A value of 10 was established as the maximum pathogenicity rate for an inoculated bird. From this rate, 5 points corresponded to scores for gross lesions present at necropsy. For each lesion present, it represents 1 point. The remaining 5 points corresponded to the death time. To obtain the death time value, an index of 1, corresponding to the maximum value assigned to a death on the first day, was divided by the number of days that the birds were evaluated, resulting in a value of 0.1428, which corresponded to a survival bonus factor. It was possible to classify E. coli strains into four pathogenicity groups according to the pathogenicity index: high pathogenicity (pathogenicity index ranging from 7 to 10), intermediate pathogenicity (pathogenicity index ranging from 4 to 6.99), low pathogenicity (pathogenicity index ranging from 1 to 3.99) and apathogenic (pathogenicity index ranging from 0 to 0.99). The analysis of the strains according to their origin revealed that isolates from broiler bedding material presented a lower pathogenicity index.Discussion: It is possible that the source of isolation implies in different results, depending on the criteria adopted. This data reinforces the importance of use a more accurate mathematical model to represents the biological phenomenon. In the study, all avian pathogenic Escherichia coli strains were classified based on a pathogenicity index and the concept of the death time represents an interesting parameter to measure the ability of the strain to promote acute and septicemic manifestation. The use of a support method for poultry veterinary diagnostic accompanying the fluctuation of the bacteria pathogenicity inside the farms may indicate a rational use of antimicrobial in poultry industry
NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data