207 research outputs found

    Shifts in wood anatomical traits after a major hurricane

    Get PDF
    •1. Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance. •2. To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre- and posthurricane periods. We also assessed correlations between traits and growth rates. •3. While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates. •4. Ultimately, within-individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances

    Drug-repositioning screens identify Triamterene as a selective drug for the treatment of DNA Mismatch Repair deficient cells.

    Get PDF
    Purpose: The DNA Mismatch repair (MMR) pathway is required for the maintenance of genome stability. Unsurprisingly, mutations in MMR genes occur in a wide range of different cancers. Studies thus far have largely focused on specific tumor types or MMR mutations, however it is becoming increasingly clear that a therapy targeting MMR-deficiency in general would be clinically very beneficial. Experimental Design: Based on a drug-repositioning approach, we screened a large panel of cell lines with various MMR deficiencies from a range of different tumor types with a compound drug library of previously approved drugs. We have identified the potassium-sparing diuretic drug Triamterene, as a novel sensitizing agent in MMR-deficient tumor cells, in vitro and in vivo. Results: The selective tumor cell cytotoxicity of Triamterene occurs through its antifolate activity, and depends on the activity of the folate synthesis enzyme, thymidylate synthase. Triamterene leads to a thymidylate synthase-dependent differential increase in reactive oxygen species in MMR-deficient cells, ultimately resulting in an increase in DNA double strand breaks. Conclusion: Conclusively, our data reveal a new drug repurposing and novel therapeutic strategy that has potential for the treatment of MMR-deficiency in a range of different tumor types and could significantly improve patient survival

    Treatment of thromboangiitis obliterans (Buerger's disease) with bosentan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study assessed the effectiveness and safety of bosentan when administered to thromboangiitis obliterans (Buerger's disease) patients.</p> <p>Methods</p> <p>A clinical pilot study was designed in which patients with ulcer and/or pain at rest were treated with bosentan p.o. at a dose of 62.5 mg twice daily during the first month, which was thereafter up-titrated to 125 mg twice daily. The study endpoints were clinical improvement rate, major or minor amputation rate, haemodynamic changes, changes in endothelial function and angiographic changes.</p> <p>Results</p> <p>Seven out of 12 patients were male (58%). Median age was 39 years (range 29-49). The median follow-up was 20 months (range 11-40). All patients were smokers. With bosentan treatment, new ischaemic lesions were observed in only one patient. Overall, clinical improvement was observed in 12 of the 13 extremities (92%). Only two out of 13 extremities underwent amputation (one major and one minor) after bosentan treatment. After being assessed by digital arteriography with subtraction or angio-magnetic resonance imaging, an increase of distal flow was observed in 10 out of the 12 patients. All patients experienced a statistically significant improvement in their BAFMD values (mean: 1.8 at baseline; 6.6 at the end of the treatment; 12.7 three months after the end of the treatment; p < 0.01).</p> <p>Conclusion</p> <p>Bosentan treatment may result in an improvement of clinical, angiographic and endothelial function outcomes. Bosentan should be investigated further in the management of TAO patients. Larger studies are required to confirm these results.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01447550">NCT01447550</a></p

    An Analysis of the Myocardial Transcriptome in a Mouse Model of Cardiac Dysfunction with Decreased Cholinergic Neurotransmission

    Get PDF
    Autonomic dysfunction is observed in many cardiovascular diseases and contributes to cardiac remodeling and heart disease. We previously reported that a decrease in the expression levels of the vesicular acetylcholine transporter (VAChT) in genetically-modified homozygous mice (VAChT KDHOM) leads to decreased cholinergic tone, autonomic imbalance and a phenotype resembling cardiac dysfunction. In order to further understand the molecular changes resulting from chronic long-term decrease in parasympathetic tone, we undertook a transcriptome-based, microarray-driven approach to analyze gene expression changes in ventricular tissue from VAChT KDHOM mice. We demonstrate that a decrease in cholinergic tone is associated with alterations in gene expression in mutant hearts, which might contribute to increased ROS levels observed in these cardiomyocytes. In contrast, in another model of cardiac remodeling and autonomic imbalance, induced through chronic isoproterenol treatment to increase sympathetic drive, these genes did not appear to be altered in a pattern similar to that observed in VAChT KDHOM hearts. These data suggest the importance of maintaining a fine balance between the two branches of the autonomic nervous system and the significance of absolute levels of cholinergic tone in proper cardiac function

    Psychometric properties of the IDS-SR30 for the assessment of depressive symptoms in spanish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the high prevalence of depression, it is clinically relevant to improve the early identification and assessment of depressive episodes. The main objective of the present study was to examine the psychometric properties of the IDS-SR<sub>30 </sub>(Self-rated Inventory of Depressive Symptomatology) in a large Spanish sample of depressive patients.</p> <p>Methods</p> <p>This prospective, naturalistic, multicenter, nationwide epidemiological study conducted in Spain included 1595 adult patients (65.3% females) with a DSM-IV Major Depressive Disorder (MDD. IDS-SR<sub>30 </sub>and the Hamilton Depression Rating Scale (HDRS, 21 items)were administered to the sample. Data was collected during 2 routine visits. The second assessment was carried out after 10 ± 2 weeks after first assessment.</p> <p>Results</p> <p>The IDS-SR<sub>30 </sub>showed good internal consistency (α = 0.94) and high item total correlations (≥ 0.50) were found in 70% of the items. The convergent validity was 0.85. Results of the principal component analysis (PCA) and confirmatory factor analyses (CFA) showed that a three factor model (labelled mood/cognition, anxiety/somatic and sleep) is adequate for the current sample.</p> <p>Conclusions</p> <p>The Spanish version of the IDS-SR<sub>30 </sub>seems a reliable, valid and useful tool for measuring depression symptomatology in Spanish population.</p

    Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

    Get PDF
    Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+. Though broad scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass (AGB) at spatial grains ranging from 5 to 250m (0.025–6.25 ha), and we evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that the spatial sampling error in AGB is large for standard plot sizes, averaging 46.3% for 0.1 ha subplots and 16.6% for 1 ha subplots. Topographically heterogeneous sites showed positive spatial autocorrelation in AGB at scales of 100m and above; at smaller scales, most study sites showed negative or nonexistent spatial autocorrelation in AGB. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGB leads to a substantial “dilution” bias in calibration parameters, a bias that cannot be removed with current statistical methods. Overall, our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders
    corecore