146 research outputs found

    Visualization of the action of ligninolytic enzymes on high yield pulp fibers

    No full text
    High-yield pulps from wheat straw and from poplar wood were treated with manganese-peroxidase (MnP) or with laccase (Lac), before and after a second refining stage

    ProbFAST: Probabilistic Functional Analysis System Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis.</p> <p>Results</p> <p>We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes.</p> <p>Conclusions</p> <p>ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at <url>http://gdm.fmrp.usp.br/probfast</url>.</p

    A Time-Series Method for Automated Measurement of Changes in Mitotic and Interphase Duration from Time-Lapse Movies

    Get PDF
    Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments.Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment.This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division

    Divergent Effects of Human Cytomegalovirus and Herpes Simplex Virus-1 on Cellular Metabolism

    Get PDF
    Viruses rely on the metabolic network of the host cell to provide energy and macromolecular precursors to fuel viral replication. Here we used mass spectrometry to examine the impact of two related herpesviruses, human cytomegalovirus (HCMV) and herpes simplex virus type-1 (HSV-1), on the metabolism of fibroblast and epithelial host cells. Each virus triggered strong metabolic changes that were conserved across different host cell types. The metabolic effects of the two viruses were, however, largely distinct. HCMV but not HSV-1 increased glycolytic flux. HCMV profoundly increased TCA compound levels and flow of two carbon units required for TCA cycle turning and fatty acid synthesis. HSV-1 increased anapleurotic influx to the TCA cycle through pyruvate carboxylase, feeding pyrimidine biosynthesis. Thus, these two related herpesviruses drive diverse host cells to execute distinct, virus-specific metabolic programs. Current drugs target nucleotide metabolism for treatment of both viruses. Although our results confirm that this is a robust target for HSV-1, therapeutic interventions at other points in metabolism might prove more effective for treatment of HCMV

    An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia

    Get PDF
    The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a central role in the transcriptional response to oxygen flux. To gain insight into the molecular pathways regulated by HIF-1, it is essential to identify the downstream-target genes. We report here a strategy to identify HIF-1-target genes based on an integrative genomic approach combining computational strategies and experimental validation. To identify HIF-1-target genes microarrays data sets were used to rank genes based on their differential response to hypoxia. The proximal promoters of these genes were then analyzed for the presence of conserved HIF-1-binding sites. Genes were scored and ranked based on their response to hypoxia and their HIF-binding site score. Using this strategy we recovered 41% of the previously confirmed HIF-1-target genes that responded to hypoxia in the microarrays and provide a catalogue of predicted HIF-1 targets. We present experimental validation for ANKRD37 as a novel HIF-1-target gene. Together these analyses demonstrate the potential to recover novel HIF-1-target genes and the discovery of mammalian-regulatory elements operative in the context of microarray data sets

    The genome of the white-rot fungus Pycnoporus cinnabarinus : a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown

    Get PDF
    Background: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.Results: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all thespecific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases.Conclusions: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.Microbial Biotechnolog

    Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3

    No full text
    Laccase production by the strain Pycnoporus cinnabarinus ss3 was studied in a solid-state culture on sugar-cane bagasse using chemical compounds as inducers (ethanol, methanol, veratryl alcohol and ferulic acid). Laccase productions were about 5- to 8.5-fold higher than non-induced cultures. Liquid-culture experiments with "Glabeled ethanol were conducted. Ninety-eight percent of the initial amount of C-14 from ethanol was recovered as (CO2)-C-14, C-14-biomass and soluble C-14-compounds (mainly ethanol). The amount of C-14 in the biomass was only 6.8% of the total carbon consumed by P cinnabarinus, in absence of maltose, representing only 2.8% of added ethanol (1.1% and 1.6% in presence of maltose, respectively). Ethanol was poorly used as carbon and energy sources for P. cinnabarinus growth and other carbon sources present in the liquid medium (yeast extract and sodium tartrate) were preferentially degraded. Time-courses of laccase activity and gene expression were monitored in column in presence or in absence of ethanol vapors. Analyses showed a perfect correlation between the activity and the amount of transcript. After 16 days of ethanol ventilation through the column, the ethanol flow was stopped. Immediately, both laccase activity and gene expression decreased, but started to increase again as soon as the ventilation was restored. In parallel, the effect of ethanol on protease activity in R cinnabarinus was measured. Presence of ethanol led to an inhibition of protease activity. Therefore ethanol plays a regulatory role on two elements (gene-expression and protease-activity levels) that are both in favor of an increase in laccase production by the fungus
    • ā€¦
    corecore