42 research outputs found

    Measuring Evapotranspiration of five Alley Cropping systems in Germany using the Eddy-Covariance- and Bowen-Ratio Energy-Balance methods

    Get PDF
    Measuring evapotranspiration (ET) of heterogeneous ecosystems using methods like the eddy-covariance- (ECEB) and Bowen-Ratio energy-balance (BREB) methods is challenging due to their restrictions to horizontally homogeneous terrain and steady state conditions. The unfavorable ambient conditions lead to a site-specific non-closure of the energy-balance, which is a balance between the incoming net radiation and the ground-, latent- and sensible heat fluxes. Thus, an underestimation of measured heat fluxes leads to an overestimation of the latent heat fluxes inferred from the ECEB method. The aim of our study is to 1) quantify the site-specific non-closure of the energy-balance and 2) characterize the performance of both methods, compared to direct eddy-covariance measurements using a high-frequency infra-red gas analyzer (LI-7200, Licor Inc.). To assess continuous ET rates on a 30-minute time scale we installed a combined ECEB and BREB system at five alley cropping and five agricultural reference sites across Germany. For time periods of four weeks, we performed direct eddy covariance flux measurements for H2O and CO2 over one crop- and one grassland alley cropping- and their respective reference systems during the growing season of 2016. We found a non-closure between 21 and 26 % for all sites, with the residual energy being highest during the morning and lowest in the afternoon. Related to that the energy-balance ratio (EBR), i.e. the ratio between the turbulent heat fluxes and available energy, was below one in the morning hours and increased slightly during the day up to 1.8, until the EBR decreased sharply after sunset. The EBR correlated to the daily cycle of solar radiation, the main driver of turbulent fluxes. Corresponding, we found an increasing EBR with increasing friction velocity, indicating, that the energy-balance closure improves under turbulent condition. Further our analysis reveal that turbulent fluxes estimated by the BREB method compared well with direct eddy-covariance measurements. An accuracy improvement was found with increasing sensor distance. We conclude, when calculating ET rates on a 30-minute time scale using the ECEB method the site-specific non-closure should be assessed beforehand by eddy-covariance. In the current study, ignoring the non-closure would have lead to an overestimation of the ET rates of about 25 % for the ECEB method

    Simulation of greenhouse gases following land-use change to bioenergy crops using the ECOSSE model. A comparison between site measurements and model predictions

    Get PDF
    This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from short rotation coppice willow (SRC-Willow), short rotation forestry (SRF-Scots Pine) and Miscanthus after landuse change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber (IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between modelled and EC-derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA-derived Rh and modelled outputs was statistically significant at the Aberystwyth site (r = 0.64), but not significant at the Lincolnshire site (r = 0.29). At all SRC-Willow sites, significant association was found between modelled and measurement-derived Rh (0.44 ≤ r ≤ 0.77); significant error was found only for the EC-derived Rh at the Lincolnshire site. Significant association and no significant error were also found for SRF-Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA-derived Rh at one site (r = 0.75). No bias in the model was found at any site, regardless of the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a monthly time-step. This study provides confidence in using ECOSSE for predicting the impacts of future land use on GHG balance, at site level as well as at national level

    Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC‐based T estimates show higher correlation to sap flow‐based T than EC‐based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high‐quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data‐based estimates of ecosystem T permitting a data‐driven perspective on the role of plants’ water use for global water and carbon cycling in a changing climate

    Ecosystem transpiration and evaporation : Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three dailyTestimates shows high correlation among methods (Rbetween .89 and .94), but a spread in magnitudes ofT/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-basedTestimates show higher correlation to sap flow-basedTthan EC-based ET. The partitioning methods show expected tendencies ofT/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows thatT/ET variability was 1.6 times higher across sites than across years. Spatial variability ofT/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall,TandT/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understandingTglobally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystemTpermitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.Peer reviewe

    Quality Control of CarboEurope Flux Data - Part I: Coupling Footprint Analyses with Flux Data Quality Assessment to Evaluate Sites in Forest Ecosystems

    Get PDF
    We applied a site evaluation approach combining Lagrangian Stochastic footprint modelling with a quality assessment approach for eddy-covariance data to 25 forested sites of the CarboEurope-IP network. The analysis addresses the spatial representativeness 5 of the flux measurements, instrumental effects on data quality, spatial patterns in the data quality, and the performance of the coordinate rotation method. Our findings demonstrate that application of a footprint filter could strengthen the CarboEurope-IP flux database, since only one third of the sites is situated in truly homogeneous terrain. Almost half of the sites experience a significant reduction in eddy-covariance data 10 quality under certain conditions, though these effects are mostly constricted to a small portion of the dataset. Reductions in data quality of the sensible heat flux are mostly induced by characteristics of the surrounding terrain, while the latent heat flux is subject to instrumentation-related problems. The Planar-Fit coordinate rotation proved to be a reliable tool for the majority of the sites using only a single set of rotation angles. 15 Overall, we found a high average data quality for the CarboEurope-IP network, with good representativeness of the measurement data for the specified target land cover types.JRC.H.2-Air and Climat

    Quality control of CarboEurope flux data – Part I: Footprint analyses to evaluate sites in forest ecosystems

    No full text
    International audienceWe applied a site evaluation approach combining Lagrangian Stochastic footprint modelling with a quality assessment approach for eddy-covariance data to 25 forested sites of the CarboEurope-IP network. The analysis addresses the spatial representativeness of the flux measurements, instrumental effects on data quality, spatial patterns in the data quality, and the performance of the coordinate rotation method. Our findings demonstrate that application of a footprint filter could strengthen the CarboEurope-IP flux database, since only one third of the sites is situated in truly homogeneous terrain. Almost half of the sites experience a significant reduction in eddy-covariance data quality under certain conditions, though these effects are mostly constricted to a small portion of the dataset. Reductions in data quality of the sensible heat flux are mostly induced by characteristics of the surrounding terrain, while the latent heat flux is subject to instrumentation-related problems. The Planar-Fit coordinate rotation proved to be a reliable tool for the majority of the sites using only a single set of rotation angles. Overall, we found a high average data quality for the CarboEurope-IP network, with good representativeness of the measurement data for the specified target land cover types

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Full text link
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

    Full text link
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible
    corecore