1,608 research outputs found

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    Š The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Effect of vitamin D supplementation on bone health parameters of healthy young Indian women

    Get PDF
    Summary There is a huge prevalence of hypovitaminosis D in the Indian population. We studied the efficacy and safety of oral vitamin D supplementation in apparently healthy adult women. Monthly cholecalciferol given orally, 60,000 IU/month during summers and 120,000 IU/month during winters, safely increases 25-hydroxyvitamin D (25 (OH)D) levels to near normal levels. Introduction There is a huge burden of hypovitaminosis D in the Indian population. The current recommendation for vitamin D supplementation is not supported by sufficient evidence. Methods Study subjects included 100 healthy adult women of reproductive age group from hospital staff. They wer

    Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6) mice and a trend for increased tumor incidence after stainless steel (SS) fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant) or non-carcinogenic (iron abundant) metal-containing welding fumes at the transcriptome level.</p> <p>Methods</p> <p>Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS), Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done.</p> <p>Results</p> <p>Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as <it>CCL3</it>, <it>CCL4</it>, <it>CXCL2</it>, and <it>MMP12 </it>in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as <it>S100A8</it>, <it>S100A9 </it>and <it>MMP9</it>.</p> <p>Conclusions</p> <p>Collectively, our results demonstrate that lung tumor susceptibility may predispose the A/J strain to a prolonged dysregulation of immunomodulatory genes, thereby delaying the recovery from welding fume-induced lung inflammation. Additionally, our results provide unique insight into strain- and welding fume-dependent genetic factors involved in the lung response to welding fume.</p

    Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta

    Get PDF
    Amyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer’s disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear. In this study we investigated the effects of increased levels of neuronal APP or Aβ on mitochondrial metabolism and gene expression, in human SH-SY5Y neuroblastoma cells. Increased non-amyloidogenic processing of APP, but not Aβ, profoundly decreased respiration and enhanced glycolysis, while mitochondrial DNA (mtDNA) transcripts were decreased, without detrimental effects to cell growth. These effects cannot be ascribed to Aβ toxicity, since higher levels of endogenous Aβ in our models do not cause oxidative phosphorylation (OXPHOS) perturbations. Similarly, chemical inhibition of β-secretase decreased mitochondrial respiration, suggesting that non-amyloidogenic processing of APP may be responsible for mitochondrial changes. Our results have two important implications, the need for caution in the interpretation of mitochondrial perturbations in models where APP is overexpressed, and a potential role of sAPPα or other non-amyloid APP fragments as acute modulators of mitochondrial metabolism

    Application of Permutation Genetic Algorithm for Sequential Model Building–Model Validation Design of Experiments

    Get PDF
    YesThe work presented in this paper is motivated by a complex multivariate engineering problem associated with engine mapping experiments, which require efficient Design of Experiment (DoE) strategies to minimise expensive testing. The paper describes the development and evaluation of a Permutation Genetic Algorithm (PermGA) to support an exploration-based sequential DoE strategy for complex real-life engineering problems. A known PermGA was implemented to generate uniform OLH DoEs, and substantially extended to support generation of Model Building–Model Validation (MB-MV) sequences, by generating optimal infill sets of test points as OLH DoEs, that preserve good space filling and projection properties for the merged MB + MV test plan. The algorithm was further extended to address issues with non-orthogonal design spaces, which is a common problem in engineering applications. The effectiveness of the PermGA algorithm for the MB-MV OLH DoE sequence was evaluated through a theoretical benchmark problem based on the Six-Hump-Camel-Back (SHCB) function, as well as the Gasoline Direct Injection (GDI) engine steady state engine mapping problem that motivated this research. The case studies show that the algorithm is effective at delivering quasi-orthogonal space-filling DoEs with good properties even after several MB-MV iterations, while the improvement in model adequacy and accuracy can be monitored by the engineering analyst. The practical importance of this work, demonstrated through the engine case study, also is that significant reduction in the effort and cost of testing can be achieved.The research work presented in this paper was funded by the UK Technology Strategy Board (TSB) through the Carbon Reduction through Engine Optimization (CREO) project

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Regulation of Gene Expression in Plants through miRNA Inactivation

    Get PDF
    Eukaryotic organisms possess a complex RNA-directed gene expression regulatory network allowing the production of unique gene expression patterns. A recent addition to the repertoire of RNA-based gene regulation is miRNA target decoys, endogenous RNA that can negatively regulate miRNA activity. miRNA decoys have been shown to be a valuable tool for understanding the function of several miRNA families in plants and invertebrates. Engineering and precise manipulation of an endogenous RNA regulatory network through modification of miRNA activity also affords a significant opportunity to achieve a desired outcome of enhanced plant development or response to environmental stresses. Here we report that expression of miRNA decoys as single or heteromeric non-cleavable microRNA (miRNA) sites embedded in either non-protein-coding or within the 3′ untranslated region of protein-coding transcripts can regulate the expression of one or more miRNA targets. By altering the sequence of the miRNA decoy sites, we were able to attenuate miRNA inactivation, which allowed for fine regulation of native miRNA targets and the production of a desirable range of plant phenotypes. Thus, our results demonstrate miRNA decoys are a flexible and robust tool, not only for studying miRNA function, but also for targeted engineering of gene expression in plants. Computational analysis of the Arabidopsis transcriptome revealed a number of potential miRNA decoys, suggesting that endogenous decoys may have an important role in natural modulation of expression in plants
    • …
    corecore