7 research outputs found

    Shear Behavior of Reinforced Concrete Inverted-T Deep Beam

    Get PDF
    Contrary to top-loaded deep beams, Inverted-T (IT) deep beams are loaded on ledges at the beam’s bottom chord. The presence of the load near the bottom of the beams creates a tension field in the web at the loading points. An experimental investigation was carried out in which 8 specimens of reinforced concrete IT deep beams were tested and the effect of the following variables was studied: changing the hanger diameter, hanger arrangement in terms of spacing and distribution distance, hanger reinforcement ratio, vertical and horizontal web shear reinforcement diameter, and spacing. In addition, all the tested beams had long ledges extending to the end of the beam. It was concluded that hanger reinforcement diameter and horizontal web shear reinforcement have an insignificant effect on the IT deep beam capacity. While the change in hanger arrangement, vertical web reinforcement, and ledge length has a significant effect on IT deep beam capacity. The maximum spacing of the hanger reinforcement and the minimum hanger reinforcement ratio passing through the load plate length will be studied in the following publication. A finite element model (FEM) was presented to predict the behavior of IT deep beams. The simulation was carried out using the ABAQUS 2017 software program. The results of the numerical model showed good agreement with the experimental program. Analysis using design codes was checked against the experimental data, where the computed beam capacities were compared to those obtained from the test results. The comparison showed a remarkable difference between the predictions using the design codes and the test results. Computation using design codes significantly underestimated the capacities of the beams. Doi: 10.28991/CEJ-2023-09-05-04 Full Text: PD

    Maximizing the electronic charge carriers in donor-doped hematite under oxygen-rich conditions via doping and co-doping strategies revealed by density functional theory calculations

    No full text
    The low electronic conductivity of hematite (α-Fe2O3) limits its best performance in many applications. Though highly reducing conditions induce an intrinsic n-type behavior, reaching extremely low oxygen partial pressure (pO2) values is not practical. Alternatively, certain dopants provide hematite with excess electrons at practical pO2 values. This study employs density functional theory with thermodynamic analysis to compute the concentration of electronic defects in hematite as a function of pO2, upon doping with 1% of 3d, 4d, and 5d transition metals. Isothermal Kröger–Vink diagrams at 1100 K are plotted to reveal the charge compensation mechanism controlling the electronic carriers in doped hematite and the maximum attainable pO2 value, which achieves approximately one electron per dopant. A higher pO2 value is a metric for an effective donor. Ti, Zr, Hf, Nb, Ta, Mo, and W are shown to be effective donors, especially Nb, Ta, and W, which achieve a 1:1 electron/dopant ratio around atmospheric pressure and a maximum electron/dopant ratio greater than one. The latter is a new metric introduced in this study to quantify the doping efficacy of a donor. Moreover, our study shows that W, Ta, and Nb co-doping in specific percentages with any of the other investigated dopants ensures the n-type behavior of the co-doped hematite while opening the possibility of improving other properties via the other dopant. The other dopant can be Ni or Co to enhance the surface catalytic properties or Zn to increase the minority hole carriers. Both properties are desirable in applications such as photoelectrochemical cells

    Impact of Dietary Betaine and Metabolizable Energy Levels on Profiles of Proteins and Lipids, Bioenergetics, Peroxidation and Quality of Meat in Japanese Quail

    No full text
    Three different diets were formulated with three levels of metabolizable energy (ME) (optimum; 2900, restricted; 2800 and low; 2700 kcal ME/kg diet) without or with (0 and 0.15%) betaine supplementation in 2 × 3 factorial design to evaluate the effect of six experimental diets on performance, proteins and lipids profiles, bioenergetics, peroxidation and meat quality of Japanese quail. Therefore, 360 quails allocated into six groups in a 23-day experiment. Dietary betaine and ME levels did not affect the performance, meat energy indices (ATP and AMP) and malondialdehyde (MDA) levels of Japanese quail meat. Dietary betaine and/or ME levels induced significant changes in serum triacylglycerol (TAG), total cholesterols (TC), low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein cholesterol (VLDL-c), meat total lipids and cholesterol of Japanese quail. Optimum and restricted ME levels reduced total volatile basic nitrogen (TVBN) whereas dietary betaine increased ecosapentaenoic (EPA), docosahexaenoic acids (DHA) and glutamine concentrations in breast meat of Japanese quail. Dietary betaine and low energy diet improved cooking loss, thawing loss (ThL) and water holding capacity (WHC) in breast meat of Japanese quail. Conclusively, dietary betaine improved meat quality of Japanese quail fed diets containing either restricted or low ME by enrichments the meat with omega-3 fatty acids and reduction of lipids levels
    corecore