223 research outputs found

    Patients' inability to perform a preoperative cardiopulmonary exercise test or demonstrate an anaerobic threshold is associated with inferior outcomes after major colorectal surgery.

    Get PDF
    BACKGROUND: Surgical patients with poor functional capacity, determined by oxygen consumption at anaerobic threshold (AT) during cardiopulmonary exercise testing (CPET), experience longer hospital stays and worse short- and medium-term survival. However, previous studies excluded patients who were unable to perform a CPET or who failed to demonstrate an AT. We hypothesized that such patients are at risk of inferior outcomes after elective surgery. METHODS: All patients undergoing major colorectal surgery attempted CPET to assist in the planning of care. Patients were stratified by their test results into Fit (AT ≥ 11.0 ml O2 kg(-1) min(-1)), Unfit (AT < 11.0 ml O2 kg(-1) min(-1)), or Unable to CPET groups (failed to pedal or demonstrate an AT). For each group, we determined hospital stay and mortality. RESULTS: Between March 2009 and April 2010, 269 consecutive patients were screened, and proceeded to bowel resection. Median hospital stay was 8 days (IQR 5.1-13.4) and there were 44 deaths (16%) at 2 yr; 26 (9.7%) patients were categorized as Unable to CPET, 69 (25.7%) Unfit and 174 (64.7%) Fit. There were statistically significant differences between the three groups in hospital stay [median (IQR) 14.0 (10.5-23.8) vs 9.9 (5.5-15) vs 7.1 (4.9-10.8) days, P < 0.01] and mortality at 2 yr [11/26 (42%) vs 14/69 (20%) vs 19/174 (11%), respectively (P < 0.01)] although the differences between Unable and Unfit were not statistically different. CONCLUSIONS: Patients' inability to perform CPET is associated with inferior outcomes after major colorectal surgery. Future studies evaluating CPET in risk assessment for major surgery should report outcomes for this subgroup

    Approximate Analytical Solutions to the Initial Data Problem of Black Hole Binary Systems

    Full text link
    We present approximate analytical solutions to the Hamiltonian and momentum constraint equations, corresponding to systems composed of two black holes with arbitrary linear and angular momentum. The analytical nature of these initial data solutions makes them easier to implement in numerical evolutions than the traditional numerical approach of solving the elliptic equations derived from the Einstein constraints. Although in general the problem of setting up initial conditions for black hole binary simulations is complicated by the presence of singularities, we show that the methods presented in this work provide initial data with l1l_1 and ll_\infty norms of violation of the constraint equations falling below those of the truncation error (residual error due to discretization) present in finite difference codes for the range of grid resolutions currently used. Thus, these data sets are suitable for use in evolution codes. Detailed results are presented for the case of a head-on collision of two equal-mass M black holes with specific angular momentum 0.5M at an initial separation of 10M. A straightforward superposition method yields data adequate for resolutions of h=M/4h=M/4, and an "attenuated" superposition yields data usable to resolutions at least as fine as h=M/8h=M/8. In addition, the attenuated approximate data may be more tractable in a full (computational) exact solution to the initial value problem.Comment: 6 pages, 5 postscript figures. Minor changes and some points clarified. Accepted for publication in Phys. Rev.

    Introduction to Isolated Horizons in Numerical Relativity

    Full text link
    We present a coordinate-independent method for extracting mass (M) and angular momentum (J) of a black hole in numerical simulations. This method, based on the isolated horizon framework, is applicable both at late times when the black hole has reached equilibrium, and at early times when the black holes are widely separated. We show how J and M can be determined in numerical simulations in terms of only those quantities which are intrinsic to the apparent horizon. We also present a numerical method for finding the rotational symmetry vector field (required to calculate J) on the horizon.Comment: 14 pages, revtex4, 7 figures. Final PRD versio

    Tracking Black Holes in Numerical Relativity

    Full text link
    This work addresses and solves the problem of generically tracking black hole event horizons in computational simulation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime manifold containing black hole sources, are employed in development of a robust tracking method capable of continuously monitoring arbitrary changes of topology in the event horizon, as well as arbitrary numbers of gravitational sources. The method makes use of continuous families of level set viscosity solutions of the eikonal equation with identification of the black hole event horizon obtained by the signature feature of discontinuity formation in the eikonal's solution. The method is employed in the analysis of the event horizon for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we establish both qualitative and quantitative physics for the asymmetric collision; including: 1. Bounds on the topology of the throat connecting the holes following merger, 2. Time of merger, and 3. Continuous accounting for the surface of section areas of the black hole sources.Comment: 14 pages, 16 figure

    Search for the decay K+π+ννˉK^+\to \pi^+ \nu \bar\nu in the momentum region Pπ<195 MeV/cP_\pi < 195 {\rm ~MeV/c}

    Full text link
    We have searched for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar\nu in the kinematic region with pion momentum below the K+π+π0K^+ \to \pi^+ \pi^0 peak. One event was observed, consistent with the background estimate of 0.73±0.180.73\pm 0.18. This implies an upper limit on B(K+π+ννˉ)<4.2×109B(K^+ \to \pi^+ \nu \bar\nu)< 4.2\times 10^{-9} (90% C.L.), consistent with the recently measured branching ratio of (1.570.82+1.75)×1010(1.57^{+1.75}_{-0.82}) \times 10^{-10}, obtained using the standard model spectrum and the kinematic region above the K+π+π0K^+ \to \pi^+ \pi^0 peak. The same data were used to search for K+π+X0K^+ \to \pi^+ X^0, where X0X^0 is a weakly interacting neutral particle or system of particles with 150<MX0<250 MeV/c2150 < M_{X^0} < 250 {\rm ~MeV/c^2}.Comment: 4 pages, 2 figure

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Further search for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar \nu in the momentum region P < 195 MeV/c

    Full text link
    We report the results of a search for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar \nu in the kinematic region with π+\pi^+ momentum 140<P<195140 < P < 195 MeV/c using the data collected by the E787 experiment at BNL. No events were observed. When combined with our previous search in this region, one candidate event with an expected background of 1.22±0.241.22 \pm 0.24 events results in a 90% C.L. upper limit of 2.2×1092.2 \times 10^{-9} on the branching ratio of K+π+ννˉK^+ \to \pi^+ \nu \bar \nu. We also report improved limits on the rates of K+π+X0K^+ \to \pi^+ X^0 and K+π+X1X2K^+ \to \pi^+ X^1 X^2 where X0,X1,X2X^0, X^1, X^2 are hypothetical, massless, long-lived neutral particles.Comment: 5 pages, 3 figures, Accepted for publication in Phys. Rev.

    Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses

    Get PDF
    The sidereal time dependence of MiniBooNE electron neutrino and anti-electron neutrino appearance data are analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino and anti-electron neutrino appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the electron neutrino appearance data prefer a sidereal time-independent solution, and the anti-electron neutrino appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10E-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for muon neutrino to electron neutrino and anti-muon neutrino to anti-electron neutrino oscillations. The fit values and limits of combinations of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters
    corecore