31 research outputs found

    Characterization of the lncRNA transcriptome in mESC-derived motor neurons: Implications for FUS-ALS

    Get PDF
    Long non-coding RNAs (lncRNAs) are currently recognized as crucial players in nervous system development, function and pathology. In Amyotrophic Lateral Sclerosis (ALS), identification of causative mutations in FUS and TDP-43 or hexanucleotide repeat expansion in C9ORF72 point to the essential role of aberrant RNA metabolism in neurodegeneration. In this study, by taking advantage of an in vitro differentiation system generating mouse motor neurons (MNs) from embryonic stem cells, we identified and characterized the long non-coding transcriptome of MNs. Moreover, by using mutant mouse MNs carrying the equivalent of one of the most severe ALS-associated FUS alleles (P517L), we identified lncRNAs affected by this mutation. Comparative analysis with humanMNs derived in vitro frominduced pluripotent stemcells indicated that candidate lncRNAs are conserved between mouse and human. Our work provides a global view of the long non-coding transcriptome of MN, as a prerequisite toward the comprehension of the still poorly characterized non-coding side ofMNphysiopatholog

    Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gamma motor neurons (γ-MNs) selectively innervate muscle spindle intrafusal fibers and regulate their sensitivity to stretch. They constitute a distinct subpopulation that differs in morphology, physiology and connectivity from α-MNs, which innervate extrafusal muscle fibers and exert force. The mechanisms that control the differentiation of functionally distinct fusimotor neurons are unknown. Progress on this question has been limited by the absence of molecular markers to specifically distinguish and manipulate γ-MNs. Recently, it was reported that early embryonic γ-MN precursors are dependent on GDNF. Using this knowledge we characterized genetic strategies to label developing γ-MNs based on GDNF receptor expression, showed their strict dependence for survival on muscle spindle-derived GDNF and generated an animal model in which γ-MNs are selectively lost.</p> <p>Results</p> <p>In mice heterozygous for both the <it>Hb9::GFP </it>transgene and a tau-lacZ-labeled (<it>TLZ</it>) allele of the GDNF receptor Gfrα1, we demonstrated that small motor neurons with high Gfrα1-TLZ expression and lacking Hb9::GFP display structural and synaptic features of γ-MNs and are selectively lost in mutants lacking target muscle spindles. Loss of muscle spindles also results in the downregulation of Gfrα1 expression in some large diameter MNs, suggesting that spindle-derived factors may also influence populations of α-MNs with β-skeletofusimotor collaterals. These molecular markers can be used to identify γ-MNs from birth to the adult and to distinguish γ- from β-motor axons in the periphery. We also found that postnatal γ-MNs are also distinguished by low expression of the neuronal nuclear protein (NeuN). With these markers of γ-MN identity, we show after conditional elimination of GDNF from muscle spindles that the survival of γ-MNs is selectively dependent on spindle-derived GDNF during the first 2 weeks of postnatal development.</p> <p>Conclusion</p> <p>Neonatal γ-MNs display a unique molecular profile characterized by the differential expression of a series of markers - Gfrα1, Hb9::GFP and NeuN - and the selective dependence on muscle spindle-derived GDNF. Deletion of GDNF expression from muscle spindles results in the selective elimination of γ-MNs with preservation of the spindle and its sensory innervation. This provides a mouse model with which to explore the specific role of γ-fusimotor activity in motor behaviors.</p

    A Regulatory Circuitry Between Gria2, miR-409, and miR-495 Is Affected by ALS FUS Mutation in ESC-Derived Motor Neurons

    Get PDF
    Mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). FUS is a multifunctional protein involved in the biogenesis and activity of several types of RNAs, and its role in the pathogenesis of ALS may involve both direct effects of disease-associated mutations through gain- and loss-of-function mechanisms and indirect effects due to the cross talk between different classes of FUS-dependent RNAs. To explore how FUS mutations impinge on motor neuron-specific RNA-based circuitries, we performed transcriptome profiling of small and long RNAs of motor neurons (MNs) derived from mouse embryonic stem cells carrying a FUS-P517L knock-in mutation, which is equivalent to human FUS-P525L, associated with a severe and juvenile-onset form of ALS. Combining ontological, predictive and molecular analyses, we found an inverse correlation between several classes of deregulated miRNAs and their corresponding mRNA targets in both homozygous and heterozygous P517L MNs. We validated a circuitry in which the upregulation of miR-409-3p and miR-495-3p, belonging to a brainspecific miRNA subcluster implicated in several neurodevelopmental disorders, produced the downregulation of Gria2, a subunit of the glutamate α‐amino‐3‐hydroxy‐5‐methyl-4-isoxazole propionic acid (AMPA) receptor with a significant role in excitatory neurotransmission. Moreover, we found that FUS was involved in mediating such miRNA repression. Gria2 alteration has been proposed to be implicated in MN degeneration, through disturbance of Ca2+ homeostasis, which triggers a cascade of damaging “excitotoxic” events. The molecular cross talk identified highlights a role for FUS in excitotoxicity and in miRNA-dependent regulation of Gria2. This circuitry also proved to be deregulated in heterozygosity, which matches the human condition perfectly

    FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons

    Get PDF
    The RNA-binding protein FUS participates in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Here we report that FUS controls back-splicing reactions leading to circular RNA (circRNA) production. We identified circRNAs expressed in in vitro -derived mouse motor neurons (MNs) and determined that the production of a considerable number of these circRNAs is regulated by FUS. Using RNAi and overexpression of wild-type and ALS-asso- ciated FUS mutants, we directly correlate the modulation of circRNA biogenesis with alteration of FUS nuclear levels and with putative toxic gain of function activities. We also demonstrate that FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing junctions and that this control can be reproduced with artificial constructs. Most circRNAs are conserved in humans and specific ones are deregulated in human-induced pluripotent stem cell-derived MNs carrying the FUS P525L mutation associated with AL

    ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function.

    Get PDF
    The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.Supported by Canadian Institutes of Health Research (PEF, PStGH), Alzheimer Society of Ontario (PEF, PStGH), Wellcome Trust (PStGH, MEV, CFK, GSK, DR, CEH), Medical Research Council (PStGH, MEV, CFK, GSK), National Institutes of Health Research, Alzheimer Research UK (CFK, GSK), Gates Cambridge Scholarship (JQL), Engineering and Physical Sciences Research Council (CFK, GSK), European Research Council Starting Grant RIBOMYLOME_309545 (GGT), European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 322817 (CEH), and National Institute of Neurological Disorders and Stroke R01 NS07377 (NAS). The authors thank Tom Cech and Roy Parker for helpful discussions.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.neuron.2015.10.03

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe
    corecore