51 research outputs found

    Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere

    Full text link
    We demonstrate that LFRic-Atmosphere, a model built using the Met Office's GungHo dynamical core, is able to reproduce idealised large-scale atmospheric circulation patterns specified by several widely-used benchmark recipes. This is motivated by the rapid rate of exoplanet discovery and the ever-growing need for numerical modelling and characterisation of their atmospheres. Here we present LFRic-Atmosphere's results for the idealised tests imitating circulation regimes commonly used in the exoplanet modelling community. The benchmarks include three analytic forcing cases: the standard Held-Suarez test, the Menou-Rauscher Earth-like test, and the Merlis-Schneider Tidally Locked Earth test. Qualitatively, LFRic-Atmosphere agrees well with other numerical models and shows excellent conservation properties in terms of total mass, angular momentum and kinetic energy. We then use LFRic-Atmosphere with a more realistic representation of physical processes (radiation, subgrid-scale mixing, convection, clouds) by configuring it for the four TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) scenarios. This is the first application of LFRic-Atmosphere to a possible climate of a confirmed terrestrial exoplanet. LFRic-Atmosphere reproduces the THAI scenarios within the spread of the existing models across a range of key climatic variables. Our work shows that LFRic-Atmosphere performs well in the seven benchmark tests for terrestrial atmospheres, justifying its use in future exoplanet climate studies.Comment: 34 pages, 9(12) figures; Submitted to Geoscientific Model Development; Comments are welcome (see Discussion tab on the journal's website: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-647

    Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model

    Get PDF
    Aerosols are known to significantly affect cloud and precipitation patterns and intensity, but these interactions are ignored or very simplistically handled in climate and numerical weather-prediction (NWP) models. A suite of one-way nested Met Office Unified Model (UM) runs, with a single-moment bulk microphysics scheme was used to study two convective cases with contrasting characteristics observed in southern England. The autoconversion process that converts cloud water to rain is directly controlled by the assumed droplet number. The impact of changing cloud droplet number concentration (CDNC) on cloud and precipitation evolution can be inferred through changes to the autoconversion rate. This was done for a range of resolutions ranging from regional NWP (1 km) to high resolution (up to 100 m grid spacing) to evaluate the uncertainties due to changing CDNC as a function of horizontal grid resolution. The first case is characterised by moderately intense convective showers forming below an upper-level potential vorticity anomaly, with a low freezing level. The second case, characterised by one persistent stronger storm, is warmer with a deeper boundary layer. The colder case is almost insensitive to even large changes in CDNC, while in the warmer case a change of a factor of 3 in assumed CDNC affects total surface rain rate by ~17%. In both cases the sensitivity to CDNC is similar at all grid spacings <1 km. The contrasting sensitivities of these cases are induced by their contrasting ice-phase proportion. The ice processes in this model damp the precipitation sensitivity to CDNC. For this model the convection is sensitive to CDNC when the accretion process is more significant than the melting process and vice versa

    Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    Get PDF
    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds

    Intercomparison of cloud model simulations of Arctic mixed‐phase boundary layer clouds observed during SHEBA/FIRE‐ACE

    Get PDF
    An intercomparison of six cloud‐resolving and large‐eddy simulation models is presented. This case study is based on observations of a persistent mixed‐phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment ‐ Arctic Cloud Experiment (FIRE‐ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi‐steady states associated with either persistent mixed‐phase clouds or all‐ice clouds after the first few hours of integration, implying the existence of multiple states for this case. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed‐phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all‐ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed‐phase cloud for deposition rates in the cloud layer greater than about 1 − 2 × 10−5 g kg−1 s−1 for this case. These results indicate the critical importance of precipitation‐radiative‐dynamical interactions in simulating cloud phase, which have been neglected in previous fixed‐dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models
    • 

    corecore